Interactive Modeling and Authoring of Climbing Plants

Torsten Hadrich et al.
Eurographics 2017

Presented by Qi-Meng Zhang
2017. 04. 20

Computer Graphics @ Korea University
Abstract

• Interactive modeling of developmental climbing plants with an emphasis on efficient control and plausible physics response

• Plant is represented by a set of connected anisotropic particles
 • Each particle stores biological and physical attributes that drive growth and plant adaptation to the environment
 • Light sensitivity, wind interaction, physical obstacles
1 Introduction
1 Introduction

• Dynamic plant model
 ▪ React to the presence of other plants, to varying lighting conditions, and to the scene itself

• A number of methods have been proposed for realizing adaptive plants
 ▪ L-system
 • [PRUSINKIEWICZ P, LINDENMAYER A./“The algorithmic beauty of plants” Springer-Verlag New York 1990]
 ▪ Inverse procedural model
 • [STAVA O et al./“Inverse procedural modelling of trees” Comp.Graph.Forum.2014]
 ▪ Competition for resources
 • [RUNIONS A et al./“Modeling trees with a space colonization algorithm” Eurographics 2007]
 ▪ Simulated adaptation
 • [PIRK S et al./“Plastic trees: interactive self adapting botanical tree models” ACM Trans. Graph. 31, 4 2012]
1 Introduction

• The difficulty with climbing plants
 ▪ Need consider adaptation to the geometry of the supporting object

• Previous approaches simulated climbing plants
 ▪ Environmentally sensitive automata
 • [ARVO J et al./“Modeling plants with environment-sensitive automata” Ausgraph 1988]
 ▪ Competing particles in voxel space
 • [GREENE N./“Voxel space automata: Modeling with stochastic growth processes in voxel space” SIGGRAPH 1989]
 ▪ Represent tendrils as mass-springs
 • [WONG S.-K and CHEN K.-C./“A procedural approach to modelling virtual climbing plants with tendrils” Computer Graphics Forum 2015]

• Control, is a major open problem in plants modeling
 ▪ Most of the existing algorithm focus on standing tree
 ▪ Control by setting input parameters and the initial location of trees
1 Introduction

• Contribution

 ▪ We implemented an interactive method that allows for coherent modeling of climbing plants in changing environments and along the entire developmental process of the plant

 ▪ We model climbing plants as dynamic systems that support biologically- and physically-plausible behavior; plants remain flexible and animation-ready during the modeling session

 ▪ We couple plants with wind simulations and model advanced physical effects
 • Bending and breaking of branches

 ▪ We introduce a number of editing operations
 • Plant seeding, dynamic branch placement, removal, and sketching of attractors on support geometry
2 Related Work
2 Related Work

- Interactive control by positioning attraction

 - Simulate climbing plants by space colonization

- Require the entire plant or a set of parameters

 - Simulate plants by either Inverse procedural modeling

 STAVA O et al./ "Inverse procedural modelling of trees" Comp. Graph. Forum. 2014

 - Simulate plants by simulating the effect of wind on tree development

2 Related Work

• Interactive methods focus on user control

 • Example-based sketching system

 OKABE M et al. "Interactive design of botanical trees using freehand sketches and example-based editing" SIGGRAPH Courses. 2007

 Steven Longay et al. "TreeSketch: Interactive procedural modeling of trees on a tablet" SBIM. 2012

• Climbing plants

 • Used L-system to model climbing plants and react to gravity and sunlight

 • Generate climbing plants with a focus on procedural modeling and the behavior of tendrils that grow around objects

2 Related Work

- Particle system

 - Integrate spherical particles that approximate a tree structure within a fluid solver to simulate the interaction between trees and wind

 - Simulate deformable object by a meshless approach

 MÜLLER M et al. "Meshless deformations based on shape matching" ACM Trans. On Graph. 2005

 - Simulate deformable solids using SPH (smoothed particle hydrodynamics)

 - Extend shape matching by incorporating oriented particles

3 Overview

- Update branching structure
 - Particle simulation (Plant dynamic)
 - Geometry-based method
 - Plant growth
 - Directed random walk
 - influenced by environmental conditions
4 Climbing Plants
4 Climbing plants

- **4.1 Plant dynamic**
 - Modifies the existing plant geometry

- **4.2 Plant growth**
 - Add new plant geometry

- **4.3 Species and Material Properties**
4 Climbing plants

- Plant module

- Plant skeleton and Branch thickening

Figure 3
4 Climbing plants

4.1 Plant Dynamics

• Modifies the existing plant geometry
 ▪ User interactions and external forces

• Particle-based representation
 ▪ Particle carry quantities for their current state and rest state
 • Position and orientation, main axis (plant skeleton), velocity, angular velocity

 ▪ Particle attributes
 • Update in each time step

 ▪ Particle group
 • Include current particle, parent particle, successors
4 Climbing plants

4.1 Plant Dynamics

• Our particle-based plant representation is based on the shape matching approach

• Why need using the shape matching approach?
 ▪ The existing plant shape modified by external forces
 - Like pulling the branches to a different location
 ▪ The shape matching algorithm restores the initial plant shape

![Diagram showing the effect of pulling and shape matching on plant representation](image-url)
Shape matching algorithm

• “Meshless deformations based on shape matching”
 [MÜLLER M et al./ ACM Trans. 2014]

- Original shape
- Deformed shape
- Matched shape

- \(x_i^0 \) : initial position
- \(x_i \) : actual position
- \(g_i \) : goal position
4.1 Plant Dynamics

Particle Positions Update

- Particle positions
 - Current position X
 - Predicted position X_p
 - Target position X_t
 - Goal position X_g

Figure 4 (a) and (b)
4.1 Plant Dynamics

Predicted Position and Orientation

- Predicted position X_p

$$x_p = x + v \Delta t + \frac{(a_g + a_e) \Delta t^2}{2}, \quad (1)$$

$$v = (x_p - x)/\Delta t \quad (17)$$

$$x = x_p \quad (18)$$

- X: particle position
- V: particle velocity
- Δt: simulation step
- a_g: gravitational acceleration
- a_e: external acceleration (caused by fluid particles)
4.1 Plant Dynamics

Predicted Position and Orientation

- Predicted orientation q_p

$$q_p = \left[\hat{\omega} \sin\left(\frac{|\omega| \Delta t}{2}\right), \cos\left(\frac{|\omega| \Delta t}{2}\right) \right] q, \quad (16)$$

- ω: angular velocity of particle
- q: current particle orientation

$$\omega = \text{axis}(q_p q^{-1}) \cdot \text{angle}(q_p q^{-1}) / \Delta t \quad (19)$$

$$q = q_p \quad (20)$$
4.1 Plant Dynamics

Optimal Rotation

• Optimal rotation **R**
 - Minimizes the RMSD (root mean squared deviation) between two paired sets of points
 - Matches the rest state to the current state of each particle group

\[
A = RS \quad \text{(polar decomposition)}
\]

\[
S = \sqrt{A^T A}
\]

\[
A = \sum_i \left(A_i + m_i x_i \bar{x}_i^T - m_i c_i \bar{c}_i^T\right).
\] (14)

• **A**: total moment matrix
• **S**: symmetric part
• **m_i**: particle mass
• **x_i** and **\bar{x}_i**: current and rest particle positions
• **c_i** and **\bar{c}_i**: current and rest centers of mass per particle group

\[
R = AS^{-1}
\]
4.1 Plant Dynamics

Optimal Rotation

- The moment matrix depend on mass \(m \)

\[
m = V \rho = \frac{4\pi abc \rho}{3}, \tag{2}
\]

- \(V \): volume
- \(\rho \): density
- \(a, b, c \): the axes of the ellipsoid

\[
A_i = \frac{1}{5} m_i \begin{bmatrix}
a^2 & 0 & 0 \\
0 & b^2 & 0 \\
0 & 0 & c^2
\end{bmatrix} R. \tag{15}
\]
4.1 Plant Dynamics

Target and Goal Position

- Target position

\[
x_t = R(\bar{x} - \bar{c}) + c,
\]

(3)

- Goal position

\[
x_g = \sum_i w_i x_i^i / W,
\]

(4)

- \(w \): individual weight

- When particle attach to objects

\[
x_p' = x_p + \phi(x_{anchor} - x_p),
\]

(5)

\[
0 < \phi < 1
\]
4.2 Plant Growth

- Add new plant geometry
 - By using two way
 - Extending existing branches
 - Adding new lateral branches
 - Reacts to environmental conditions
4.2 Plant Growth

• Within each time step all particles at the end of the plant’s shoots increase their size until a maximal size is reached.

• Growth rate depends on the amount of light at the particle position that can additionally be controlled by the user.

• The two contributions of surface adaption and phototropism are integrated into a new growth position and orientation.
4.2 Plant Growth

Surface Adaption

- Plant particle approaches an object
 - Plant orients itself parallel to the surface

 Axis:
 \[\mathbf{a}_a = \mathbf{\hat{v}}_s \times \mathbf{\hat{v}}_f \]

 Rotational angle:
 \[\alpha_a = (\mathbf{\hat{v}}_s \cdot \mathbf{\hat{v}}_f) \tau \Delta t, \quad (6) \]

 - \(\mathbf{v}_s \): vector pointing to the closest surface
 - \(\mathbf{v}_f \): current forward vector
 - \(0 \leq \tau \leq 1 \): controls the surface adaption strength
 - Defined by user

Figure 4 (c)
4.2 Plant Growth

Phototropism

- Plant response to light
 - Orients plant organs towards the light direction
 - Help the apices reach areas with more intensive illumination

Axis:

\[\mathbf{a}_p = \mathbf{v}_l \times \mathbf{v}_f \]

Rotational angle:

\[\alpha_p = (1 - O)\eta\Delta t, \quad (7) \]

- \(\mathbf{v}_l \): vector to the light source
- \(O \): light occlusion at the particle location
- \(\eta \): controls the phototropism response strength

Figure 4 (d)
4.2 Plant Growth

Growth Integration

- Accumulated rotation matrix
 \[R_g = R(a_a, \alpha_a) R(a_p, \alpha_p), \]
 \[R(a, \alpha) \text{ returns a rotation matrix} \]

- Update particle orientation
 \[R = RR_g \]
 \[\bar{R} = \bar{R}R^{-1}R_g, \]
 \[R \text{ and } \bar{R} : \text{ current and rest orientations} \]
4.2 Plant Growth

Growth Integration

- Update particle position
 - In its current state and rest state
 \[
 \mathbf{x} = \mathbf{x}_h + \mathbf{\bar{R}} \mathbf{R} \mathbf{u}_f \\
 \mathbf{\bar{x}} = \mathbf{\bar{x}}_h + \mathbf{\bar{R}} \mathbf{u}_f,
 \]
 - \(\mathbf{x}_h \) and \(\mathbf{\bar{x}}_h \) : head position
 - \(\mathbf{u}_f \) : forward vector, \(\mathbf{u}_f = \begin{bmatrix} 0, & 1, & 0 \end{bmatrix}^T \)
4.3 Species and Material Properties

Branches and Leaves

- **Branches**
 - Branching probability
 - Branching variance: [0,1]
 - Direction of lateral branches
 - Orientation MAX=90 degrees
 - Thickness of new branch
 - $t_c = t_p \cdot f$
 - t_c : thickness of child branch
 - t_p : thickness of parent branch
 - f : falloff parameter

- **Leaves**
 - Model each individual leaf with a single particle
4.3 Species and Material Properties

Stiffness and Branch Breaking

- **Stiffness**
 \[
 \mathbf{x}_g' = \mathbf{x}_p + s(\mathbf{x}_g - \mathbf{x}_p)
 \]
 - \(s\) : stiffness parameter range from \([0,1]\)
 - Controls the elasticity of plant
 - \(s = \frac{t_l}{t_m}\) : \(s\) range \([0,1]\)
 - \(t_l\) : life time
 - \(t_m\) : time of particle reaches its maximum stiffness

- **Breaking**
 - Occur from gravity or user interaction
5 Authoring
5 Authoring

5.1 Dynamic Editing

- Interactive editing operations
 - Seeding plant anywhere in the scene
 - Add a new shoot from existing branch
 - Grabbing the branches
 - Coupled with fluid dynamics
 - Cutting branches

![Image](image.png)

Figure 7

(a) (b) (c) (d) (e)
5 Authoring

5.1 Dynamic Editing

• Paint regions on obstacles
 ▪ Attract or repulse the plant’s growth
 ▪ New sketch triggers new branch

Figure 8
5 Authoring

5.2 Collision Response

• Collision of own organs
 ▪ Particle gets closer to the others than their radius \((r_n + R_n)\)

 ▪ Ellipsoid-Ellipsoid Collision
 • “Solid simulation with oriented particles”
 [MÜLLER M., CHENTANEZ N./ ACM Trans. Graph 2011]
 ▪ Compute the contact point of two particles and displace them along their normal until they no longer intersect
 • \(d\) is the scalar that tells us how far to shift ellipsoid
 • \(x\) is the contact point
5 Authoring

5.2 Collision Response

- Collision of other plants, obstacles
 - Assign each shape a signed distance field (SDF)
 - Compute the distance of longest axis of a particle and the surface stored in the SDF
 - If the distance is smaller than the length of the longest axis
 - Move the particle

SDF:

The sign of ‘0’ represent surface

Figure 9
5 Authoring

5.3 Two-way Fluid Coupling

- Couple plants with a fluid simulation
 - Wind field is simulated by Smoothed Particle Hydrodynamics (SPH)

\[
a_i = \frac{dv_i}{dt} = (-\nabla p + \mu \nabla^2 v) / \rho, \tag{11}
\]

- \(-\nabla p\): pressure
- \(\mu \nabla^2 v\): viscosity
- Wood and air density: \(0.3 - 1.0 \cdot 10^3 \text{ kg/m}^3\)
 \(1.3 - 1.4 \text{ kg/m}^3\)

\[
x_p = x + v \Delta t + \frac{(a_g + a_e) \Delta t^2}{2}, \tag{1}
\]

Figure 4 (f)
5 Authoring

5.3 Two-way Fluid Coupling

- Fluid quantities $A(x)$, at a certain location x are computed as a weighted sum of neighboring particles j,

$$A(x) = \sum_{j=1}^{N} V_j A_j \, W(\eta), \quad (12)$$

- V_j : volume
- W : smoothing kernel
- η : normalized position vector ($\eta = (x - x_j)/h$)
 - Ellipsoidal particles

$$\eta = G(x - x_j), \quad (13)$$
- G : linear transformation
6 Implementation and Result
6 Implementation and Result

- Branch mesh
 - Generate cylinder mesh between two adjacent particles
 - Not explicitly generate a tree graph
- Shadows
 - Computed by using Variance shadow maps
- Obstacle collisions
 - Signed distance filed
- Simulation of fluids and physics response with a time step
 - \(t = 25ms \)
6 Implementation and Result

Performance measurements

<table>
<thead>
<tr>
<th>Fig.</th>
<th>NP (k)</th>
<th>T (ms)</th>
<th>R (%)</th>
<th>P (%)</th>
<th>G (%)</th>
<th>C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>18.16</td>
<td>27.65</td>
<td>29.38</td>
<td>42.42</td>
<td>0.55</td>
</tr>
<tr>
<td>7</td>
<td>plant: 5 fluid: 1</td>
<td>20.40</td>
<td>26.01</td>
<td>7.83</td>
<td>43.85</td>
<td>22.12</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>9.66</td>
<td>44.42</td>
<td>14.11</td>
<td>41.07</td>
<td>0.40</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>17.05</td>
<td>29.46</td>
<td>29.68</td>
<td>40.37</td>
<td>0.48</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>16.82</td>
<td>26.87</td>
<td>34.17</td>
<td>38.46</td>
<td>0.50</td>
</tr>
<tr>
<td>14, l</td>
<td>10</td>
<td>16.87</td>
<td>29.77</td>
<td>33.55</td>
<td>35.08</td>
<td>1.60</td>
</tr>
<tr>
<td>14, r</td>
<td>25</td>
<td>51.76</td>
<td>11.63</td>
<td>39.51</td>
<td>48.33</td>
<td>0.53</td>
</tr>
</tbody>
</table>
6 Implementation and Result

Parameters used for the results

<table>
<thead>
<tr>
<th>Fig.</th>
<th>N</th>
<th>B</th>
<th>BP</th>
<th>V</th>
<th>Ph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>0.4</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>14, r</td>
<td>20</td>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

N: number of plant
B: maximum number of lateral buds
BP: branch probability
V: branching variance
Ph: phototropism
6 Implementation and Result

6.1 Results

Figure 12
Phototropism

Gravity and high stiffness

Low stiffness
6 Implementation and Result

6.1 Results

Drags

Support structure

Figure 6

Figure 11

Figure 6

Figure 14
6 Implementation and Result

6.2 Evaluation

- Compare our results to photographs of real climbing plants

Real climbing plants

Our system

Figure 13

Wong et al. "A procedural approach to modelling virtual climbing plants with tendrils"
Computer Graphics Forum 2015
7 Discussion and Limitations

• Limitation
 ▪ Global control
 • Difficult to predict
 ▪ Species
 • Singleness
 ▪ Biomechanically-plausible simulation
 • Not provide
Our approach

- Provides an efficient means for the control over plant development
 - Allowing the user to affect growth parameters and physical properties of the plant

- Handles efficient modeling of external effects
 - Can be induced at any time without prior analysis of the plant structure

- Provide powerful editing capabilities
 - Allow to modify a plant with respect to its structure and its environment while maintaining a biologically plausible appearance

- Show the efficiency of our approach on a wide variety of interactive examples
8 Conclusion and Future Work

Future Work

• First
 ▪ Explore particle-based method and meshless deformation methods with a stronger focus on biological and physical plausibility

• Second
 ▪ Using particles for the efficient modeling of secondary growth.
 • E.g. development of growth rings, cracking of bark
Interactive Modeling and Authoring of Climbing Plants

Torsten Hädrich1 and Bedrich Benes2 and Oliver Deussen1 and Sören Pirk3

1University of Konstanz, Germany
2Purdue University, USA
3Stanford University, USA