Self-Refining Games using Player Analytics

Matt Stanton et al.
SIGGRAPH 2014

Presented by YoungBin Kim
2014. 05. 30

Computer Graphics @ Korea University
Abstract

- Demonstrate technique in a prototype *self-refining game*
 - Dynamics improve with play
 - Ultimately providing realistically rendered
 - Rich fluid dynamics in real time on a mobile device
- Present a sampling approach
 - Concentrating precomputation around the states
 - That users are most likely to encounter
Introduction
Introduction

- Interactive simulation - Data-driven techniques
 - Trade precomputation time for runtime speed and detail
 - Enabling stunningly realistic animation
 - Curling smoke
 - Flowing cloth
 - Deforming bodies
 - Only as good as their precomputation
 - Dynamical spaces are so large
 - Cannot precompute everything
Introduction

• To address this challenge
 ▪ Developed a model *self-refining game*
 • Whose dynamics improve as more people play
 • Exhaustive precomputation is unnecessary
 ▪ User interactions are typically structured
 ▪ Explore only a vanishingly small subset of the configuration space
Introduction

- Model the game
 - As a state graph
 - Whose vertices are states
 - Whose edges are short transitions between states
 - At runtime
 - Control (phone tilt) determines which transition to follow
 - Some edges *blend* simulations
 - Returning to a previously computed state
Introduction

• Which states should we explore?
 ▪ Naive growth strategies
 • Construct vast state graphs
 ▪ Only barely overlap with states explored by real players
 ▪ Also contain significant visual errors
 ▪ Using player data
 • Enables a novel form of crowd-based sampling
 ▪ Concentrates on those states players actually visit
 ▪ Significantly better state graphs with far fewer visual artifacts
Introduction

• Present *self-refining games*
 ▪ Whose dynamics are discretized into a state graph
 ▪ Exploits a new sampling strategy incorporating real player data
 • Significantly outperform previous strategies
 ▪ Present an algorithm
 • STATERANK
 ▪ Estimates the global probability of each state
 • Relative to a player model
 ▪ Adapt this framework to free-surface fluids
 • Using a novel similarity metric and blending technique
Related Work
Related Work

- Crowdsourcing
 - Text recognition
 - [von Ahn et al. 2008]
 - Drawing classification
 - [Eitz et al. 2012]
 - Performing user studies
 - [Kittur et al. 2008]
- One important subgenre of this research studies games
 - Which intrinsically motivate players to perform tasks
 - Labeling images
 - [von Ahn and Dabbish 2004; von Ahn et al. 2006]
 - Designing biomolecules
 - [Cooper et al. 2010; Lee et al. 2014]
Related Work

- Crowdsourcing to games
 - Using player data to improve the gameplay experience
 - Build player-adaptive AI
 - [Houlette 2003]
 - Generate customized levels
 - [Zook et al. 2012]
 - Generate stories
 - [El-Nasr 2007; Thue et al. 2007]
Related Work

- Playback mechanism
 - Improve gameplay
 - By generating a continually-improving sampling
 - Then played back at runtime
 - Also reminiscent of the video-playback mechanics
 - *Dragon’s Lair* [Cinematronics 1983]
 - Although since we do not depend on human animators
 - Capable of generating vastly larger data sets

- Our game improvement method
 - Automatic and generalizes across a large class of games
Related Work

• Precomputed fluids
 ▪ Topic of extensive recent graphics research
 ▪ Modeling free-surface fluids remains a challenge
 • For data-driven simulation
 ▪ Due to the complexity

• We successfully model-reduce such liquids
 ▪ Using a state-tabulation approach
Related Work

• Explicitly tabulates arbitrary dynamics and rendering
 ▪ In an offline process
 ▪ Near-exhaustive Precomputation of Secondary Cloth Effects
 • [Kim et al. 2013]
 • Our graph structure and growth process are similar
 ▪ Adapt these ideas to liquids
 • Using a new similarity measure and blend function
Related Work

• Data-driven methods
 ▪ Only as good as their precomputation data
 ▪ We attempt to capture an entire space of trajectories
 • Through a continuous state sampling process
 ▪ Uses game analytics
 ▪ Focus on that subset of the dynamics that players really explore
 • Estimate state visit probabilities using an algorithm
 ▪ STATERANK
 • Computes the stationary distribution of a Markov chain
 • With transition probabilities derived from a player model
 • Similar to the PAGERANK algorithm
State Graphs
State Graphs

• *State graph*
 - Vertices are game states
 - Edges are transitions induced by player actions
 1. Initialize a new state graph
 • Use a heuristic player model
 2. Make the game available to players
 3. Collect traces of the paths
 • They take through this graph during play
 4. By repeatedly collecting player data
 5. Updating our player model
 • Using the updated model to grow the graph
State Graphs

• In a state graph
 ▪ Each edge
 • Associated with an animation
 ▪ Connecting its source and destination states
 ▪ Format of these animations is application-dependent
 • Any encoding of the dynamics that we wish to display
 ▪ Each vertex has N outgoing edges
 • Games that sample player input from a set of N discrete controls
 ▪ At runtime
 • System replays edge animations
 ▪ Determining which branch to take based on player control
State Graphs

- Initialize a new state graph
 - Begin at a start state
 - Simulate every possible outgoing transition
 - Continue this process
 - Generating N new simulations from each state
 - Until we create a small N-ary tree
 - Eliminate by blending with interior edge transitions
 - Leading back to an internal node
 - Many of these blends were between dissimilar edges
 - Low quality

![Diagram of state graphs with edges labeled e1, e2, e3, e4, e5, e6 and e1, e2, e3a, e3b, e3c, e3d.]
State Graphs

- Improve the quality of the graph
 - By growing it using new simulation data
 - Grow the graph by replacing blend edges with simulation edges

- Growing the graph can be a continuous process
 - As long as we have space to store the results of new simulations
State Graphs

• Key challenge
 ▪ Determining which blend edges to replace

• Graph quality evaluation
 ▪ Quantify each edge’s contribution to the quality of the graph
 ▪ Simple strategy to reduce error
 • Greedily replace the blend edge most detrimental to the quality of the graph
 ▪ BASELINE
 • Worst-case quality measure
 \[\max_{e \in B} (\text{err}(e)) \]
 ▪ \(B \) : set of blend edges in the graph
 ▪ \(\text{err} \) : application-defined estimate of a blend edge’s perceptual error
 ▪ Always replace the blend edge \(e_{\max} \) with the highest error
State Graphs

- Graph quality evaluation
 - In a simulation-based game
 - Game objective encourages players to pursue strategies
 - Players will never visit the vast majority of the state space
 - Rendering most of BASELINE’s additions to the graph wasteful
 - STATERANK
 - Measures the expected error
 \[\sum_{e \in B} P(e) \text{err}(e) \]
 - \(P(e) \): probability of traversing the edge \(e \)
 - Replace the blend edge \(e_{\text{exp}} \) with maximum expected error
 \(P(e_{\text{exp}}) \text{err}(e_{\text{exp}}) \)
 - Infer \(P(e) \) from a player model \(P(c|v) \) giving conditional probabilities of controls \(c \) at each vertex \(v \)
Player Model
Player Model

• In this section
 ▪ Describe how we can learn player models from data
 ▪ Describe how we use these models to create self-refining games
 ▪ Use two different player models
 • Heuristic model to bootstrap the simulation
 • Learned model to guide our exploration
Bootstrap Model

• When the game is first created
 ▪ No player data exists

• To bootstrap state graph growth
 ▪ Use a heuristic player model $P_h(c|v)$
 • Which essentially guesses what players will do
 • Many heuristics are possible
 ▪ Best heuristic will vary by application
 ▪ Maintain the current control with probability α
 • Otherwise choose an alternate control uniformly at random

$$P_h(c|v) = \begin{cases}
\alpha & \text{if } c = c_v \\
(1 - \alpha)/N & \text{otherwise}.
\end{cases}$$

• Combining this heuristic player model with STATERANK
 • SR-HEURISTIC
• Learn our player model
 ▪ From traces of player traversals of the state graph
 • Each trace consisting of a list of vertices visited
 ▪ And the control selected at each vertex
 ▪ $P_{obs}(c|\nu)$
 • Be the observed conditional control probabilities
 ▪ Computed by normalizing control counts at ν
 ▪ $P_{obs}(\nu)$
 • Be the observed probability of visiting ν
 ▪ Obtained by normalizing the number of visits to ν by the total number of vertex visits
• To generalize our model to unvisited states
 • Assume that players will take similar actions in states
Player Analytics Model

- Learn our player model
 - Implement our player model
 - Using a kernel density estimator
 - Combined with a Markov prior with weight ϵ
 \[
P(c|v) \propto \sum_{u \in V} \sum_{c_u = c_v} w_u P_{obs}(c|u) P_{obs}(u)
 \]
 \[
w_u = k_{tri}(r, pdist(u,v)) + \epsilon,
 \]
 - $k_{tri}(r, x)$: triangular kernel with radius r
 - c_u and c_v: controls of the simulation clips generating u and v
 - V: set of vertices in the graph
 - $pdist$: inexpensive distance function
 - Combining this player model with STATERANK
 - SR-CROWD
Application to Liquids
Application to Liquids

• Our liquid simulations
 ▪ Using PCISPH [Solenthaler and Pajarola 2009]
 • Graph vertices v
 ▪ As lists of liquid particle positions and velocities
 • Graph edges
 ▪ As sequences of signed distance functions $e = [∅^1, ..., ∅^k]$
 • k-frame animations
 • $k = 10$, transitions of 1/3 of a second
 ▪ Video rendered
 • Using Mitsuba
Application to Liquids

• $dist(e_i, e_j, c)$
 - For blending
 - Based on energy and detailed liquid shape information
• $pdist(e_i, e_j)$
 - For player model
 - Compares only coarse shape descriptors
• $blend(e_i, e_j)$
 - Clip blending function
Edge Distance

- Perceptually-motivated error function
 - Incorporating both about the liquid’s shape and its energy

\[
dist(e_i, e_j, c) = \text{norm}_e(e_i, e_j) \left(\text{dist}_s(e_i, e_j) + \right.
\]
\[
\left. w_e \text{dist}_e (e_i, e_j, c) \right).
\]

- \(\text{dist}_s \): distance attributable to the shape of the two states
- \(\text{dist}_e \): distance attributable to the energies of the two states
- \(\text{norm}_e \): normalization term
- \(w_e \): controls the relative priority of the shape and energy terms
 - set \(w_e \) so that for edges \(r_i \) and \(r_j \) where the fluid is nearly at rest

\[
\text{dist}_s (r_i, r_j) \approx w_e \text{dist}_e (r_i, r_j, c)
\]
Edge Distance
- Shape distance

- \textit{dist}_s metric
 - Penalizes the blending of animations
 - Which contain liquid in very different shapes

$$\text{dist}_s(e_i, e_j) = \sum_{f=1}^{k} \text{vol}(\phi_i^f \triangle \phi_j^f)$$

$$X \triangle Y = X \cup Y \setminus X \cap Y$$
Edge Distance
- Energy distance

- $dist_e$ metric
 - Penalizes the blending of animations
 - That have very different energies

\[E(v, c) = T(v) + V(v, c) \]

- T: kinetic energy
- V: potential energy
- c: incoming control

\[dist_e(e_i, e_j, c) = \gamma |E(v_i, c) - E(v_j, c)| \]

\[\gamma = \begin{cases}
 c_{\text{gain}} & \text{if } |E(v_i, c) - E(v_j, c)| < T_0 \\
 c_{\text{loss}} & \text{if } |E(v_i, c) - E(v_j, c)| \geq T_0
\end{cases} \]

- v_i and v_j: destination vertices (final frames) of e_i and e_j
- T_0: approximately the residual kinetic energy of the fluid when it is visually at rest
Edge Distance
- Energy normalization

- norm_e
 - Normalize the previous two terms

\[
\text{norm}_e(e_i, e_j) = \begin{cases}
0 & \text{if } T_{\text{avg}} < T_0 \text{ and } c_i = c_j \\
\frac{1}{\sqrt{T_{\text{avg}} + T_0}} & \text{otherwise.}
\end{cases}
\]

\[
T_{\text{avg}} = \frac{1}{2} (T(v_i) + T(v_j))
\]
Player Model Distance

• STATERANK requires
 ▪ Perform neighbor searches
 • Using a brute-force scan of all vertices in the graph
 ▪ Function we use to compute vertex distances must be fast
 ▪ Therefore use a more efficient coarse shape similarity function pdist

• Compute a shape descriptor d_i
 ▪ For each edge e_i
 • By dividing the fluid domain into a 6 x 6 x 6 grid
 • Computing the average fraction of each cell
 ▪ That is occupied by liquid

$$\text{pdist}(e_i, e_j) = \|d_i - d_j\|_2$$
Blending

- Construct animations for blend edges
 - By blending signed distance functions
 - Using convex combinations of three signed distance functions
 - The source \emptyset_s
 - The destination \emptyset_d
 - The union of their shapes $\min(\emptyset_s, \emptyset_d)$

$$\text{blend}(\phi_s, \phi_d, t) = w_s \phi_s + w_d \phi_d + w_{s\cup d} \min(\phi_s, \phi_d)$$

$$w_s = \text{clip} \left(\frac{(1 + \ell - 2t)}{(1 + \ell)} \right)$$

$$w_d = \text{clip} \left(\frac{(2t + \ell - 1)}{(1 + \ell)} \right)$$

$$w_{s\cup d} = 1 - w_s - w_d$$

- $0 \leq t \leq 1$: denote the position in the blend
- clip: clips its argument to lie between 0 and 1
- ℓ: parameter that limits the blending coefficient applied to the union ($= 0.1$)
Implementation

• Constructed a distributed simulation system
 ▪ Carry out the large-scale state graph explorations
 ▪ Worker nodes
 • Perform simulation and render animations
 ▪ Master node
 • Orchestrates computation by maintaining the graph structure
 • Computing edge priorities and distances
 • Assigning work to the workers
• Deploy this system
 • On Amazon EC2
 ▪ Configurations featuring up to 40 worker nodes
• System performed over 8600 CPU-hours of computation
 • Generated over 1.6 TB of data
Optimizations

• Lazy relinking
 ▪ Does not attempt “relinking” of existing blend edges
 • When new edges are created
• Pre-publish relinking
 ▪ Before playing a graph we attempt to relink every blend edge
• Animation caching
 ▪ Accelerate distance computations
 • Needed for nearest neighbor search
 • By caching voxel occupancy information in memory
 ▪ Our implementation uses memcached
• Energy pre-filtering
 ▪ Only perform full distance evaluation
 • On the k-closest graph edges ($k = 100$)
Mobile Client

- Android client application
 - The key feature
 - Ability to continuously play back short (1/3 second) videos
 - Without lag between them
 - When a player selects a game
 - Client downloads the most recent version of the game’s state graph
 - Then downloads and caches any videos for edges in the current graph
 - Use device accelerometer data to select game controls
 - After each play session
 - Client uploads a list of visited graph vertices
 - And the control selected on each visit to our server
Evaluation
Evaluation

- Grew state graphs for our fluid game
 - Using three different graph error measures
 - SR-HEURISTIC and SR-CROWD
 - Growth using STATERANK
 - Either a heuristic or crowdsourced player model
 - BASELINE
 - Only prioritizes growth
 - Using local conditional control probabilities
 \[P_h(c|v) = \begin{cases}
 \alpha & \text{if } c = c_v \\
 (1 - \alpha) / N & \text{otherwise.}
 \end{cases} \]
 \[\alpha = 0.8 \]
- Fluid simulations
 - 42K-particle PCISPH simulations
Evaluation

• Grew each of our graphs
 ▪ Until graph size reached 200K frames
 • Approximately 4,300 CPU-hours were used, per graph
 ▪ To compute each graph’s 1.8 hours of animation
 ▪ Paused graph expansion
 • At 10K, 20K, 50K, 100K, and 200K frames
 • So that the graphs could be played by a group of six test players
 ▪ Yielding gameplay traces for all graphs at these checkpoints
Evaluation

- 200K-frame state graphs
Evaluation

- Predicting Player Behavior
 - Edges visited at least 10% -> Red
 - Edges visited at least 2-10% -> Orange
 - All others -> Gray
Evaluation

- Observed Error During Game Play

- Observed Time Playing High-Error Animations
Evaluation

- Observed Error During Game Play

Observed Error During Game Play

“high error” threshold

Percentage of Play

Simulation Error

0.0001 0.001

BASELINE

SR-CROWD
Limitations
Limitations

• Total dynamic complexity
 ▪ Even simple generalizations of the dynamics
 • Would overwhelm our system
• Limits of control
 ▪ Increasing the temporal or spatial control resolution
 • Explodes the state space
 • Causes technical problems
• Range of applicable phenomena
 ▪ Some phenomena might be less forgiving
• Single-viewpoint rendering
• Storage requirements
• Applicability to existing games
Conclusion
Conclusion

• *self-refining games*
 - Dynamics continuously improve based on player analytics
 - Player data can be successfully exploited
 - To capture very complex dynamical systems
 - Player-driven state sampling
 - Enables us to deliver high quality rendered content in realtime

• Further research
 - Precomputed dynamics models with other virtual elements
 - Create more flexible models
 - Address other limitations
 - Create compelling and immersive virtual worlds