Unified Spray, Foam and Bubbles for Particle-Based Fluids

Markus Ihmsen et al.
CGI 2012

Presented by MyungJin Choi
2013.06.06

Copyright of figures and other materials in the paper belongs original authors.

Computer Graphics @ Korea University
Introduction

• Basic Knowledge

• Previous Works

• Contribution
Introduction: Basic Knowledge

Three Types of Approaches for Fluid

• Eulerian
 ▪ Focus on Space(Grid)

• Lagrangian
 ▪ Focus on Particle

• Hybrid approach
 ▪ Eulerian + Lagrangian
Introduction: Three Types of Approaches for Fluid Eulerian Approach

- Eulerian approach
 - Focus on change of each spaces(grid)
- Grid-Based

- Simulating Water and Smoke with an Octree Data Structure
 Losasso, F et al. / SIGGRAPH 2004

- Fluid Animation with Dynamic Meshes
 Klingner, B et al. / SIGGRAPH 2006

- Efficient Simulation of Large Bodies of Water by Coupling Two and Three Dimensional Techniques
 Irving, G et al. / SIGGRAPH 2006

- Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid
 Chentanez, N et al. / SIGGRAPH 2011
Introduction: Three Types of Approaches for Fluid Lagrangian Approach

- Lagrangian approach
 - Focus on change of each particles
- Particle-Based

Two-Scale Particle Simulation
Solenthaler, B *et al.* / SIGGRAPH 2011
Introduction: Three Types of Approaches for Fluid

Hybrid Approach

- Hybrid approach
 - Eulerian(Grid) + Lagrangian(Particle)
 - Pressure value can be modified by Eulerian methods

Hybrid Smoothed Particle Hydrodynamics
Raveendran, K et al./ SIGGRAPH 2011
Introduction: Previous Works

Grid-Based

- Using two types of grid
- Not real-time simulation

- Using SPH and Particles Level-Set method
- Unwanted noise with FLIP

- Real-time simulation
- Not focus on detail feature

Animation of Open Water Phenomena with Coupled Shallow Water and Free Surface Simulations
Thurey, N. *et al.* / SIGGRAPH 2006

Two-way Coupled SPH and Particle Level Set Fluid Simulation
Losasso, F. *et al.* / TVCG 2008

Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid
Chentanez, N *et al.* / SIGGRAPH 2011
Introduction: Previous Works

Grid-Based

Realistic Animation of Fluid with Splash and Foam
Takahashi, T. et al. / EUROGRAPHICS 2003

- Numerical problems
- Restriction of time step
- Hypothetical model
Introduction: Previous Works

Particle-Based

- Numerical problems
- Restriction of time step
- Hypothetical model

A Layered Particle-Based Fluid Model for Real-Time Rendering of Water
Bagar, F. et al. / EGSR 2010
Introduction: Previous Works

Weak Points of Previous Works

• Grid-Based
 - Be restricted to their grid-based method
 - Can be lost more detail feature
 - Not considered other feature

• Particle-Based
 - Does not distinguish between foam and fluid particles
 - Does not generate additional particles
Introduction:

Contribution

• Author propose a technique for adding diffuse material to **Particle-Based** fluid simulations
 ▪ Not grid-based
 • Difference from other works
 • Can be used all particle methods
 ▪ E.g. : WC SPH, PIC SPH, etc
 ▪ Just relies on same type of material
 • Only water particle
Algorithm

• Diffuse Material
 ▪ Overview
 ▪ Formation of Diffuse Material

• Advection and Dissolution
 ▪ Overview
 ▪ Advection
 ▪ Dissolution
Algorithm: Diffuse Material

Overview

• How to classify diffuse material
 ▪ Potential

• How to determine the amount of diffuse material
 ▪ Energy

• How to determine property of diffuse particles
 ▪ Sampling
Algorithm: Diffuse Material

How to classify diffuse materials

- **Diffuse material** means **Foam, spray and bubble**
 - It develops when the surface tension of water molecules is reduced and water mixes with air
Algorithm: Diffuse Material

How to classify diffuse materials

• Remember below clamping function
 ▪ It returns the value between 0 and 1

\[
\Phi(I, \tau_{\text{min}}, \tau_{\text{max}}) = \frac{\min(I, \tau_{\text{max}}) - \min(I, \tau_{\text{min}})}{\tau_{\text{max}} - \tau_{\text{min}}}
\]

I : input data
\(\tau_{\text{max}}\) : user defined value
\(\tau_{\text{min}}\) : user defined value
• Trapped Air
 ▪ Air is trapped by impacts
 • E.g. : when the lip of a wave hits shallow water
 ▪ In this case air is dragged under water
 ▪ In this regions have high turbulences
 • To classify this regions the curl operator might be good choice
 ▪ Because of turbulence
 • But, author proposes to use relative velocities
 ▪ Because of unintended result of curl operator
Algorithm: Diffuse Material

How to classify Trapped Air

- The amount of trapped air is larger when fluid particles move towards each other
 - It can be measured by below function
 - It has the value between 0 and 2

\[
1 - \hat{\mathbf{v}}_{ij} \cdot \hat{\mathbf{x}}_{ij}
\]

\[
\hat{\mathbf{v}}_{ij} = \frac{\mathbf{v}_i - \mathbf{v}_j}{\| \mathbf{v}_i - \mathbf{v}_j \|}, \quad \hat{\mathbf{x}}_{ij} = \frac{\mathbf{x}_i - \mathbf{x}_j}{\| \mathbf{x}_i - \mathbf{x}_j \|}
\]
Algorithm: Diffuse Material

How to classify Trapped Air

Move towards from each other

\[\hat{\mathbf{x}}_{ij} \quad \hat{\mathbf{v}}_{ij} \]

\[\mathbf{v}_i \quad \mathbf{v}_j \]

\[\theta = 2\pi \]

\[\hat{\mathbf{v}}_{ij} \cdot \hat{\mathbf{x}}_{ij} = -1 \]

\[1 - \hat{\mathbf{v}}_{ij} \cdot \hat{\mathbf{x}}_{ij} = 2 \]

Move away from each other

\[\hat{\mathbf{x}}_{ij} \quad \hat{\mathbf{v}}_{ij} \]

\[\mathbf{v}_i \quad \mathbf{v}_j \]

\[\theta = 0 \]

\[\hat{\mathbf{v}}_{ij} \cdot \hat{\mathbf{x}}_{ij} = 1 \]

\[1 - \hat{\mathbf{v}}_{ij} \cdot \hat{\mathbf{x}}_{ij} = 0 \]
Algorithm: Diffuse Material

How to classify Trapped Air

• The scaled velocity difference

\[v_i^{diff} = \sum_j |v_{ij}| (1 - \hat{v}_{ij} \cdot \hat{x}_{ij}) W(x_{ij}, h), \]

\[W(x_{ij}, h) = \left\{ \begin{array}{ll}
1 - \frac{|x_{ij}|}{h}, & \text{if } |x_{ij}| \leq h \\
0, & \text{otherwise}
\end{array} \right\} \]

• The Potential of Trapped Air \(I_{ta} \)

\[I_{ta} = \Phi(v_{i}^{diff}, \tau_{min}, \tau_{max}) \cdot W(x_{ij}, h) \]
• Wave Crest
 ▪ At the crest of a wave, whitewater is created
 • By strong wind or when the wave gets unstable

▪ In this regions have high curvature
 • Curvature is used to classify this regions
 ▪ The surface is locally convex
Algorithm: Diffuse Material

How to classify Wave Crest

- The surface curvature
 - It can be approximated with below function
 - It has the value between 0 and 2

\[
k_i = \sum_j k_{ij} = \sum_j (1 - \hat{n}_i \cdot \hat{n}_j) \cdot W(x_{ij}, h)
\]

\(\hat{n}\): normalized surface normal

- But it can’t distinguish convex from concave regions
 - The angles between \(\hat{n}_i\) and \(\hat{x}_{ji}\) (relative position)
Algorithm: Diffuse Material

How to classify Wave Crest

\[\tilde{k}_{ij} = \begin{cases} 0, & \hat{x}_{ji} \cdot \hat{n}_i \geq 0 \\ k_{ij}, & \hat{x}_{ji} \cdot \hat{n}_i < 0 \end{cases} \]

- Wave Crest identifier \(\tilde{k}_i \)

\[\tilde{k}_i = \sum_j \tilde{k}_{ij} \]
Algorithm: Diffuse Material

How to classify Wave Crest

- But, all convex regions doesn’t generate diffuse materials
 - Only the fluid particle moves in normal
 - Check this Using Additional function

\[
\delta_{vn} = \begin{cases}
0, & \hat{v}_i \cdot \hat{n}_i < 0.6 \\
1, & \hat{v}_i \cdot \hat{n}_i \geq 0.6
\end{cases}
\]
Algorithm: Diffuse Material

How to classify Wave Crest

- We finally gets the Potential of Wave Crest I_{wc}

$$I_{wc} = \Phi(\tilde{k}_i \cdot \delta^v_n, \tau^{min}, \tau^{max})$$

\tilde{k}_i: value for checking convex
δ^v_n: value for checking move direction
Algorithm: Diffuse Material

How to determine the amount of diffuse material

- When the surface tension is decrease, diffuse material is generated
 - Using Weber number
 - But its exact computation requires to correctly model the change in surface tension
 - Because of this reason, kinetic energy is used
 - The kinetic energy I_k

\[
I_k = \Phi(E_{k,i}, \tau^{min}, \tau^{max}),
\]
\[
E_{k,i} = 0.5m_i v_i^2
\]
Algorithm: Diffuse Material

How to determine the amount of diffuse material

• The number of diffuse particles n_d is

\[n_d = I_k (k_{ta} I_{ta} + k_{wc} I_{wc}) \Delta t \]

I_k: kinetic energy
k_{ta}: maximum number of diffuse particles of trapped air
I_{ta}: potential of trapped air
k_{wc}: maximum number of diffuse particles of wave crest
I_{wc}: potential of wave crest
Δt: time step
Algorithm: Diffuse Material

How to determine property of diffuse particles

- Property has velocity and position
 - Generated diffuse particles have cylinder shape
Algorithm: Diffuse Material

How to determine property of diffuse particles

- Position of diffuse particle x_d is

 $$x_d = x + r \cos \theta e'_1 + r \sin \theta e'_2 + h \hat{v}_f$$

 $$r = r_v \sqrt{X_r}, \quad \theta = X_\theta 2\pi, \quad h = X_h \cdot \|\Delta t v_f\|$$

 $X_r, X_\theta, X_h \in [0..1]$ and they are random variables

- Velocity of diffuse particle v_d is

 $$v_d = r \cos \theta e'_1 + r \sin \theta e'_2 + \hat{v}_f$$
Algorithm: Advection and Dissolution

Overview

• Advection
 ▪ Advection is about how to determine move of diffuse material

• Dissolution
 ▪ It is about when diffuse particles are destroyed
Algorithm: Advection

Classify type of diffuse materials

• Diffuse material is influenced from water by their environment
 ▪ In air, small influenced
 ▪ On surface, medium influenced
 ▪ In water, highly influenced

• Three types of diffuse materials
 ▪ Spray, foam and bubble
 • It is classified by their position
Algorithm: Advection

Classify type of diffuse materials

- The type of diffuse materials can be determined by two methods
 - The gradient of the density field
 - The number of neighbors

- In author’s all experiments
 - Less than 6 neighbors are considered as spray
 - More than 20 neighbors are considered as bubbles
 - All other cases are considered as foam
Algorithm: Advection

The motion of diffuse materials

- Spray
 - Assume that the motion of spray is influenced by external force \(F_{ext} \) and gravity \(g \)
 - Using Euler-Cromer method, the velocity of a spray particle is updated as
 \[
 v_{\text{spray}}(t + \Delta t) = v_{\text{spray}}(t) + \Delta t \left(\frac{F_{ext}(t)}{m} + g \right)
 \]
 - The position is updated as
 \[
 x_{\text{spray}}(t + \Delta t) = x_{\text{spray}}(t) + \Delta t v_{\text{spray}}(t + \Delta t)
 \]
Algorithm: Advection

The motion of diffuse materials

- Foam
 - Foam is purely advected according to the averaged local fluid velocity

\[
\tilde{V}_f(X_d, t + \Delta t) = \frac{\sum_f V_f(t + \Delta t)K(X_d(t) - X_f(t), h)}{\sum_f K(X_d(t) - X_f(t), h)},
\]

\[
V_f(t + \Delta t) = \frac{X_f(t + \Delta t) - X_f(t)}{\Delta t}
\]

f: fluid particles
d: diffuse particle

- The position is updated as

\[
x_{foam}(t + \Delta t) = x_{foam}(t) + \Delta t\tilde{V}_f(X_d, t + \Delta t)
\]
Algorithm: Advection

The motion of diffuse materials

- Bubble
 - Bubble is advected according to the averaged local fluid velocity
 - Bubble is governed by buoyancy
 - Due to high density contrast of water and air
 - Buoyancy counteracts gravity

$$v_{bub}(t + \Delta t) = v_{bub}(t) + \Delta t(-k_b g + k_d \frac{\hat{V}_f(x_d, t + \Delta t) - v_{bub}(t)}{\Delta t})$$

- k_b: user defined value
- k_d: user defined value

- The position is updated as

$$x_{bub}(t + \Delta t) = x_{bub}(t) + \Delta t v_{bub}(t + \Delta t)$$
Algorithm: Dissolution

When diffuse particles are destroyed?

• Bubbles and spray doesn’t have life time
 ▪ But if they becomes foam, have life time
 • Life time is predetermined value
 • Subtract time step form life time

• Large clusters of foam are more stable
 ▪ Set the life time in relation to the generation potentials
Rendering

• The color of diffuse particles is determined by two algorithm
 ▪ Ray Casting
 ▪ Alpha Blending
Ray Casting

- Ray Casting
 - Eye ray is cast through the diffuse volume with direction ω
 - Bounded by an axis aligned bounding box
 - With start point x_s and end point x_e
 - With equally spaced intervals Δx
 - When ray reached to diffuse particle at point x, local volume density $\rho(x)$ is computed
 - Finally, compute the radiance L
Rendering:
Ray Casting

• The radiance L
 ▪ It is in the range between zero and one

$$L(x, \omega) = \prod_{i=0}^{s} e^{-\rho(X_s+i\Delta X)\tau\Delta X},$$

$$s = \left| \frac{x - x_s}{\Delta x} \right|, \tau \text{ is user defined scale factor}$$
Rendering:

Alpha Blending

• Final color C_p is

$$C_p = (1 - L(x_e, \omega))C_d + L(x_e, \omega)C_b$$

C_d: color of diffuse material
C_b: color of background
• Author simulates 4 scenarios
 ▪ Wave, Tower, Ship, Lighthouse
 ▪ In all scenarios, use follow user defined values
 • $\tau_{wc}^{min} = 2, \tau_{wc}^{max} = 8$
 • $\tau_{ta}^{min} = 5, \tau_{ta}^{max} = 20$
 • $\tau_{k}^{min} = 5, \tau_{k}^{max} = 50$
Results

• Wave
Results

- Tower
Results

- Ship
Results

- Light house
Results

- Timings and particle counts for the presented show cases
 - Wave: 5s per frame
 - Tower: 92s per frame
 - Ship: 31s per frame
 - Light house: 27s per frame

<table>
<thead>
<tr>
<th></th>
<th># particles</th>
<th>computation times</th>
<th>frames</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fluid</td>
<td>diffuse</td>
<td>fluid</td>
</tr>
<tr>
<td>Wave</td>
<td>220k</td>
<td>2.7m</td>
<td>53 min</td>
</tr>
<tr>
<td>Tower</td>
<td>3.5m</td>
<td>7m</td>
<td>995 min</td>
</tr>
<tr>
<td>Ship</td>
<td>2m</td>
<td>2m</td>
<td>185 min</td>
</tr>
<tr>
<td>Lighthouse</td>
<td>640k</td>
<td>3.3m</td>
<td>420 min</td>
</tr>
<tr>
<td>Lighthouse</td>
<td>640k</td>
<td>15m</td>
<td>420 min</td>
</tr>
</tbody>
</table>
Conclusion

• Resulting in visually plausible, highly detailed flow patterns

• The realism of fluid simulations is significantly improved especially for low resolution fluids

• But this does not conserve mass