Factoring Repeated Content Within and Among Images

Han-Wook Park

10 March 2011

Korea University
Computer Graphics Lab.
Abstract

• We reduce transmission bandwidth and memory for images by factoring their repeated content
 ▪ Transform map + epitome
 • Affine deformation and color scaling
 ▪ Allows efficient random-access
 • Can be used for real-time texture mapping
 ▪ Orthogonal to traditional image compression
 • Further compression such as DXT
 ▪ Also effective across a collection of images
 • in the context of image-based rendering
Introduction

• Realistic rendering of outdoor scenes requires detailed photographic textures
 ▪ Reasonable bandwidth to transmit & memory space

• Textures often contain repeated patterns
 ▪ Bricks, tiles, windows, etc.
 ▪ Traditional image compression schemes do not detect correlation of high-frequency features across nonlocal neighborhoods
 ▪ Schemes like JPEG require decompression prior to rendering

• Our goal is to exploit the significant repetition of content in the images to reduce bandwidth and memory
Introduction

- Our technique does not assume regular or fixed-frequency repetition
- Factor a given image I into an epitome E and a transform map ϕ
Introduction
Introduction

• Access to the epitome E uses filtered, access to the transform map ϕ uses nearest sampling

• Extracted blocks by using ϕ_t can overlap arbitrarily in the epitome

![Image of image blocks and overlapping locations in epitome chart]
Introduction

• Benefits
 ▪ Supports efficient random access
 ▪ Image compression can still be applied
 ▪ The epitome can have nested structure to offer progressive detail level of textures

• Limitations
 ▪ Transform map introduces a memory indirection that can add small access latency
 ▪ The reconstructed image blocks may not match exactly along their boundaries
 ▪ Filtered minification using an epitome mipmap may introduce color bleeding between epitome charts
Representation

• We redefine the transform map to encode local affine deformations

 ▪ Define for each block a 2×3 matrix D

 $$I'[p] = E[\phi_D[p/s] p].$$

 ▪ ϕ_D is piecewise constant over each image block
 ▪ Matrix D could be a full 3×3 perspective deformation, but affine deformations form a sufficiently accurate local approximation
Representation

- Repeated image elements may also differ due to low-frequency lighting variations over the image
 - 3×3 diagonal matrix L to factor out lighting variation

Representation

• For storage efficiency we quantize the coefficients stored in ϕ

 ▪ 16-bit fixed point numbers for two transition coefficients, 4 additional 8-bit integer for affine deformation
 • 3 fractional bits – max $8K^2$, precision of 0.125,
 • 64 bits/block or 0.25 bits / pixel for $s^2 = 16^2$

 ▪ 8bits/channel for encoding ϕ_L
Construction

• Input image I is square with size $n \times n$
 - ϕ has size $\lceil n/s \rceil \times \lceil n/s \rceil$

• We seek to minimize the size of the two stored textures, $|E| + |\phi|$, as well as the image reconstruction error $\|I' - I\|^2$

$$\min_{s,E,\phi} \lambda (|E| + |\phi|) + \sum_{p \in I} \|E[\phi_D[p/s] p] \phi_L[p/s] - I[p]\|^2$$

 - λ provides a tradeoff between accuracy and conciseness
Construction

• For a given block size \(s \) and maximum error \(\epsilon \)
 - Error \(e(B) \) for block \(B \) is
 \[
 e(B) = \frac{\sum_{p \in B} \| I'[p] - I[p] \|^2}{\sigma(I_B)^\alpha + \beta}.
 \]
 - Variance \(\sigma(I_B) \) as a perceptual factor to better preserve low-contrast features
 • With \(0 \leq \alpha \leq 2 \) and small \(\beta \)
 - Seek for
 \[
 \min_{E, \phi} |E| \text{ such that } \forall B \in I, e(B) \leq \epsilon.
 \]
Construction

- Approximate using a greedy, deterministic, iterative construction process
 - Each epitome chart is a connected set of 4×4-pixel blocks
 - Maximize the number of new image blocks while minimizing the epitome growth
 - Find self-similarities in I
 - Create an epitome chart for each repeated content, to satisfy a maximum norm on the image reconstruction error
 - Optimize the transform map ϕ, to minimize the reconstruction error given the epitome content
 - Assemble all epitome charts into an epitome atlas E
Finding self-similarities

- For each block in the input image
 - Finding self-similarities within tolerance ϵ
Finding self-similarities

- We perform match search using the KLT feature tracker [Lucas and Kanade 1981; Shi and Tomasi 1994]
 - Optimizes affine alignment of two windows
 - Designed for small affine transformations
 - Need a good starting state
Finding self-similarities

• We initialize separate KLT searches at a grid of seed points spaced every $s/4$ pixels
 - Prune the search using color histograms
 - Compute color scaling L_{ij} by dividing the mean colors
 • Color scaling must not exceed 1.25
 - Guess initial rotation using orientation histograms
 $$\theta_{\text{guess}} = \arg \min_{\theta} \sum_{\theta=0^\circ}^{360^\circ} \left(H_{\text{orient}}(\theta, B_i) - H_{\text{orient}}(\theta + \theta', S_j) \right)^2$$
 • 36 buckets over 0-360 degrees using luminance gradient strength
 - Perform separate searches in pre-built image pyramid
 • Only search from minified levels to avoid blurring
 - We also consider both mirror reflections
Finding self-similarities

Histogram $H_{\text{orient}}(\theta, B_j)$

Histogram $H_{\text{orient}}(\theta, S_j)$

Image Pyramid

Block B_j

S_j^0

S_j^1

S_j^2

I_0: scale = 1.0

I_1: scale = 1.5

I_2: scale = 1.5^2

I_3: scale = 1.5^3
Finding self-similarities

• Some image blocks may have an excessive number of matches
 ▪ Ex. sky in a photograph
 ▪ We define a separate relationship of equivalent blocks

• During the search for Match(B_i)
 ▪ Find another block that is nearly identical up to color scaling B_j
 • Low tolerance, no deformation
 ▪ B_j shares the same match list as B_i
Creating epitome charts
Creating epitome charts

• When I^E is a set of successfully reconstructed blocks

\[I^E = \{ B \in I \mid e(B) \leq \epsilon \} \]

- E: epitome
- We seek to add the region ΔE that maximizes

\[\text{Benefit}(\Delta E) = |I^E + \Delta E \setminus I^E| - |\Delta E| \]

• We want a region that is able to contain the transformed patches from many Match lists
- Find such a candidate region C_j for each $s \times s$ epitome block B_j
Creating epitome charts

\[
\text{Cover}(B_j) = \{ M_{i,k} \mid M_{i,k}(B_i) \cap B_j \neq \emptyset \}.
\]
\[
C_j = \{ B \mid B \cap M_{i,k}(B_i) \neq \emptyset, M_{i,k} \in \text{Cover}(B_j) \}.
\]
Creating epitome charts

• The chart growth candidates are
 - \((\Delta E)_j = C_j \setminus E\) for \(B_j\) inside or adjacent to the current chart
 - \((\Delta E)_j = C_j\) for starting a new chart

• Grow until we cannot find any addition for which Benefit\((\Delta E') \geq 0\)
 - Restart growing process at a new location

• Terminate when the whole image is reconstructed
 - \(I^E = I\)
Creating epitome charts
Optimizing the transform map

• After the epitome construction is completed, we iterate through all image blocks B_i, determine the location in the epitome that offers the best reconstruction of B_i, and update the transform map ϕ accordingly

$$\phi[B_i] = \arg \min_{M \in \text{Match}(B_i), M(B_i) \subseteq E} ||B_i - M(B_i)||.$$

- This process may create unused epitome areas
 • Remove the unused blocks
Optimizing the transform map

- The quality of the reconstructed image can improve significantly
Assembling charts into an epitome atlas

• We use the heuristic algorithm of [Freivalds et al. 2002]
 - Polyomino packing problem
 - Larger to smaller
 - Small charts are more likely to fit into the gaps left between the larger charts

Chart List = \{ \begin{array}{c} \text{chart} \end{array} \}

\begin{array}{c}
\begin{array}{c}
\text{chart} \\
\text{chart} \\
\text{chart} \\
\text{chart} \\
\text{chart} \\
\end{array}
\end{array}
Hierarchical construction

• For large images, the matching search becomes expensive
 ▪ We have explored a hierarchical construction algorithm

• Partition the image into sub-images \{i\}
 ▪ Obtain its epitome \(E_i\), and then form their union \(E' = \bigcup_i E_i\)
 ▪ Reconstruct \(\phi\) using \(E'\) to trim blocks away
 ▪ Splitting into \(K\) sub-images can potentially provide \(K\) times speed up
Texture mapping

- Mipmapping
 - Color bleeding occurs between different charts
 - Add padding (e.g. 4 pixels)
 - For extreme minification, use original mipmap of image I
Texture mapping

- Chart padding by itself does not guarantee continuous inter-block reconstruction
 - Perform explicit bilinear interpolation
 - 4 closest samples
 - Using pixel shader
 - Fast - 800M pixels/second on an NVIDIA GeForce 8800 GTX
Compression

• ϕ compresses well due to its local coherence

- Applying lossless PNG compression to the offset map ϕ_t reduces it from 7.06 KB to 4.34 KB
Compression

- The epitome E also can be compressed
 - DXT compression is used for our real-time rendering scenario
 - Supports random access
 - 4 x 4 epitome blocks can be directly copied from compressed DXT blocks
 - Also can be compressed using PNG or JPEG
Compression

Close-up of the 1792×944 input image in Figure 28

(1) Compression after factoring (35KB epitome + 35KB transform map)

(2) Compression of input image with JPEG 2000 (70KB)
Progressive representation

- We can create a nested epitome structure
 - Scalable level-of-detail representation
 - Small epitome E_1, larger E_2, much larger E_3...
 - Store difference only

- Transform map is different, but predictable
 - Many blocks still refer to E_1
 - Allows effective compression
Progressive representation

- We first construct \((\phi_2, E_2)\) using a small error threshold \(\epsilon_2\). Next, we construct a coarser representation \((\phi_1, E_1)\) using a large error threshold \(\epsilon_1\)
 - Content of \(E_1\) is constrained to be a subset of \(E_2\)
 - By adaptively removing blocks from \(E_2\)

- Generate remap function \(\psi_2\)
 - \(E_1\) and \(E_2\) are packed differently, need a remapping function

- Overall progressive stream will be

\[
E_1, \phi_1, E_2 \setminus E_1, \psi_2, \text{diff}(\phi_2, \phi_1), \ E_3 \setminus E_2, \psi_3, \text{diff}(\phi_3, \phi_2), \ldots
\]
Factoring image collections

- We apply the hierarchical construction algorithm described before.
Results
Results

Figure 21: Memory size as a function of the image block size s for the example in Figure 1, with fixed error tolerance $\epsilon=0.002$.

Figure 22: Epitome memory size as a function of error tolerance ϵ for the example in Figure 1, with fixed block size $s=12$. The size of the original image (744KB) is indicated by the red square.
Results

Detail Transfer

- Raw image
- Input I
- Reconstruction I'

Figure 23: Example of intra-image detail transfer.

Detail Removal

- Input I
- Epitome E
- Reconstruction I'

Figure 24: Example of image element “generification.”
Future work

• Allow editing of the epitome to update shared image elements
• Exploit image factoring for better inpainting
• Speed up the epitome construction
• Improve matching of content across image collections
• Increase the reconstruction quality by using a perceptual metric