Optimized Spatial Hashing for Collision Detection of Deformable Objects

Vision Modeling and Visualization 2003
Matthias Teschner et al.

2 March 2010

Korea University
Computer Graphics Lab.

Analyzed by Po-Ram Kim
Abstract

• We propose a new approach to collision and self–collision detection of dynamically deforming objects that consist of tetrahedrons
• The presented algorithm is integrated in a physically–based environment
 ▪ be used in game engines and surgical simulators
• Using hash function
 ▪ Not always provide a unique mapping of grid cells
 ▪ Optimize the parameter
• The algorithm can detect collisions and self–collisions in environments of up to 20k tetrahedrons in real–time
Introduction

• The detection of collisions and self–collisions of deformable objects based on spatial hashing-1
 ▪ Algorithm classifies all object primitives
 • Object primitives: vertices and tetrahedrons
 • Tetrahedrons → AABB

▪ Using hash function
 • 3D boxes (cells) → 1D hash value
 • Each hash value contains a number of object primitives
 • Self-collision can be detected well
Introduction

• The detection of collisions and self–collisions of deformable objects based on spatial hashing-2
 ▪ Using barycentric coordinates of a vertex with respect to a penetrated tetrahedron
 • To estimate the penetration depth for a pair of colliding tetrahedrons
 • Can be used for collision response
Introduction

- Using a hash function is very efficient
 - Do not need to Spatial Hashing
 - Pre-processing
 - To estimation that the global bounding box and the cell size

- The hash mechanism does not always provide a unique mapping of grid cells to hash table entries
 - the performance decreases
 - To reduce the number of index collisions
 - Optimized the parameters
 - Characteristics of the hash function, hash table size, and the cell size
Introduction

- The paper presents experimental results
 - using physically-based environments for deformable objects with varying geometrical complexity
- 20000 tetrahedrons can be tested for collisions and self-collisions in real-time on a PC
Related Work

• 1. Bounding Box

• 2. Collision Detection using BSP Trees
Related Work

• 3. Collision detection for Bounding Box
• 4. If collision detection is detected for bounding boxes
 ▪ → collision detection for primitives
• Many types of BVs have been investigated
Related Work

• Sphere BV

• AABB BV
 - Efficient collision detection of complex deformable models
 • Journal
 • G. var

between Non-
Related Work

- Physically–based simulation → computational surgery
 - Dynamic Real-Time Deformations using Space & Time Adaptive Sampling
 - SIGGRAPH 2001
 - Gilles Debunne et al.
Related Work

• Cloth modeling
 ▪ Robust treatment of collisions, contact and friction for cloth animation
 • SIGGRAPH ’02
 • R. Bridson et al.
Collision Detection Algorithm

- In a first pass
 - All vertices of all objects are classified with respect to these small 3D cells

- In a second
 - All tetrahedrons are classified with respect to the same 3D cells

- Intersection test
 - Using barycentric coordinates
Collision Detection Algorithm

- Collisions and self–collisions
 - Collisions
 - If
 - A vertex penetrates a tetrahedron
 - Then
 - Collision is detected
 - Self-collisions
 - If
 - A vertex penetrates a tetrahedron
 - The vertex and the tetrahedron belong to the same object
 - Then
 - Self-collisions is detected
Collision Detection Algorithm

• Spatial Hashing of Vertices-1
 ▪ position \((x, y, z)\)
 \(\rightarrow\) integer \((i, j, k)\):
 \[i = \lfloor x/l \rfloor, j = \lfloor y/l \rfloor, k = \lfloor z/l \rfloor\]
 ▪ Example
 • \(P(0.28, 0.72) \rightarrow I(1, 3)\)
 • \(i : 0.28/0.2 = 1.4 \rightarrow 1\)
 • \(j : 0.72/0.2 = 3.6 \rightarrow 3\)
Collision Detection Algorithm

• Spatial Hashing of Vertices-1
 ▪ The hash function
 • Mapping the discretized 3D position \((i, j, k)\) to a 1D index \(h\)
 ▪ The vertex and object information is stored
 • In a hash table at this index \(h\): \(h = \text{hash}(i, j, k)\)

• In a first pass
 ▪ Spatial Hashing of Vertices
 ▪ Compute the AABBs of all tetrahedrons
Collision Detection Algorithm

- Spatial Hashing of Tetrahedrons-2
 - First,
 - The minimum and maximum values describing the AABB of a tetrahedron, are discretized
 - These values are divided by the user-defined cell size and rounded down to the next integer
 - Second,
 - Hash values are computed for all cells affected by the AABB of a tetrahedron
Collision Detection Algorithm

- Spatial Hashing of Tetrahedrons-2
 - All cells are traversed from the discretized minimum to the discretized maximum of the AABB
 - All vertices found at the according hash table index are tested for intersection
Collision Detection Algorithm

• Intersection Test-1
 ▪ If
 • \(p \) and \(t \) are mapped to the same hash index
 • \(p \) is not part of \(t \)
 \[p : \text{vertex}, t : \text{tetrahedron} \]
 ▪ Then
 • a penetration test has to be performed
Collision Detection Algorithm

• Intersection Test-2(The actual intersection test)
 ▪ First,
 • p is checked against the AABB of t
 ▪ second
 • Whether p is inside t
 = This test computes barycentric coordinates of p with respect to a vertex of t
Parameters

• Optimize all these aspects of the algorithm
 ▪ The characteristics of the hash function
 ▪ The size of the hash table
 ▪ The size of a 3D cell for spatial subdivision
 ▪ The actual intersection test influence the performance of the algorithm
Parameters

Hash Function

- The hash function has to work
 - Vertices of the same object, that are close to each other
 - Vertices of different objects, that are farther away
- Hash function

\[
\text{hash}(x,y,z) = (x \, p1 \, \text{xor} \, y \, p2 \, \text{xor} \, z \, p3) \mod n
\]

where \(p1, p2, p3 \) are large prime numbers in our case 73856093, 19349663, 83492791

- The value \(n \) is the hash table size
Parameters

Hash Table Size

- Larger hash tables
 - reduce the risk of mapping different 3D positions to the same hash index
 - The algorithm generally works faster
 - The performance slightly decreases
 - due to memory management

- If (the hash table size > the number of object primitives)
 - the risk of hash collisions is minimal
Parameters

Hash Table Size

- Performance of the collision detection algorithm for two deformable vessels
- An overall number of 5898 vertices and 20514 tetrahedrons

Figure 3
Parameters

Hash Table Size

- Performance of the collision detection algorithm for 100 deformable objects
- An overall number of 1200 vertices and 1000 tetrahedrons

![Diagram showing collision detection performance](image)

Figure 4

Collision detection [ms]

Hash table size
Parameters
Hash Table Size

• **NO** re-initialization of hash table in each simulation step
 ▪ These would reduce the efficiency
 ▪ To avoid this problem
 • each simulation step is labeled with a unique time stamp
 ▪ be performed during the simulation
 • would be comparatively costly for larger hash tables
Parameters

Grid Cell Size

- The grid cell size: used for spatial hashing
 - Influences the number of object primitives
 - Mapping to the same hash index

- In case of larger cells,
 → (cell width size << tetrahedron’s edge length)
 - The number of primitives per hash index increases
 - The intersection test slows down
Parameters

Grid Cell Size

- If (cell size << tetrahedron size)
 → (cell width size << tetrahedron’s edge length)
 - The tetrahedron
 - Covers a larger number of cells
 - has to be checked against vertices in a larger number of hash entries
the grid cell size has a more impact on the performance than hash table size or hash function
Parameters

Intersection Test

• Compare two tests for detecting whether a vertex \(p \) penetrates a tetrahedron \(t \)
 - Barycentric coordinates test
 - Half–space test
 • Checks whether a vertex is in the positive or negative half–space of oriented faces of a tetrahedron
 - Barycentric–coordinate test is faster than the half–space test
 • Using Barycentric coordinates test

\[\text{\(P \) is a vertex of another tetrahedron.} \]
Parameters

Intersection Test

- Barycentric coordinates test
 - Barycentric coordinates with respect to \(x_0 \)

\[
\beta = (\beta_1, \beta_2, \beta_3)^T \\
p = x_0 + A\beta \\
A = [x_1 - x_0, x_2 - x_0, x_3 - x_0] \\
P = X0 + \beta_1 \cdot V_1 + \beta_2 \cdot V_2 + \beta_3 \cdot V_3 \\
\beta = A^{-1}(p - x_0)
\]
Parameters

Intersection Test

- Barycentric coordinates → Triangle
 \[\beta = (\beta_1, \beta_2, \beta_3)^T \]
- Barycentric coordinates → Tetrahedron
 - if \[\beta_1 + \beta_2 + \beta_3 \leq 1 \]
 \[\beta_1 \geq 0, \beta_2 \geq 0, \beta_3 \geq 0 \]
 - then
 - The vertex is inside the tetrahedron
Time Complexity

• Let n be the number of primitives
 ▪ Primitives: vertices and tetrahedrons

• Time complexity: $O(n^2)$

• The goal of our approach: $O(n)$

• During the first pass takes $O(n)$ time
 ▪ All vertices are inserted into the hash table
Time Complexity

• In **the second pass** takes: $O(n \cdot p \cdot q)$
 - p is the average number of cells intersected by a tetrahedron
 - q is the average number of vertices per cell

 - If the cell size is chosen to be proportional to the average tetrahedron size, p is a constant
 - If there are no hash collisions, q is a constant
 • hash collisions: different primitives mapping same hash index

• **Therefore**
 - The time complexity of the algorithm turns out to be linearly dependent on the number of primitives
Results

- The performance is independent from the number of objects
 - It only depends on the number of object primitives

<table>
<thead>
<tr>
<th>setup</th>
<th>objects</th>
<th>tetras</th>
<th>vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>1000</td>
<td>1200</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>4000</td>
<td>1936</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>10000</td>
<td>4840</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>20514</td>
<td>5898</td>
</tr>
<tr>
<td>E</td>
<td>100</td>
<td>50000</td>
<td>24200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>setup</th>
<th>ave [ms]</th>
<th>min [ms]</th>
<th>max [ms]</th>
<th>dev [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.3</td>
<td>4.1</td>
<td>6.5</td>
<td>0.24</td>
</tr>
<tr>
<td>B</td>
<td>12.6</td>
<td>11.3</td>
<td>15.0</td>
<td>0.59</td>
</tr>
<tr>
<td>C</td>
<td>30.4</td>
<td>28.9</td>
<td>34.4</td>
<td>1.25</td>
</tr>
<tr>
<td>D</td>
<td>70.0</td>
<td>68.5</td>
<td>72.1</td>
<td>0.86</td>
</tr>
<tr>
<td>E</td>
<td>172.5</td>
<td>170.5</td>
<td>174.6</td>
<td>1.08</td>
</tr>
</tbody>
</table>
Discussion

• The proposed algorithm
 ▪ Detects whether a vertex penetrates a tetrahedron

• Does NOT detect whether an edge intersects with a tetrahedron
 • The performance of the algorithm would decrease significantly
 ▪ The relevance of an edge test is unclear in case of densely sampled objects
 • It is hard to do collision response in case of penetrating edges
Discussion

• Tetrahedrons are usually mapped to several hash indices
 - Leads to a larger number of elements in the hash table
 - decreasing the performance of the algorithm

• The comparison of the performance with other CD
 - It is difficult
 - RAPID [9], PQP [18], and SWIFT [7]
 - These are NOT optimized for deformable objects
 - They work with data structures
 - That can be pre-computed for rigid bodies
 - But they have to be updated in case of deformable objects
Ongoing Work

- Correct collision response based on our algorithm
 - Our algorithm provides the exact position of a vertex inside a penetrated tetrahedron
 - we can easily derive the penetration depth

- For real-time simulation of deformable objects
 → can be used in game engines or surgical simulators
 - Completed with the collision response (above mentioned)
 - the framework will handle interacting deformable models of up to several thousand tetrahedrons in real-time
Conclusion

• We have introduced
 ▪ Detecting collisions and self–collisions of dynamically deforming objects
 ▪ Origin: computing the global bounding box of all objects and explicitly performing a spatial subdivision
 ▪ Ours: using a hash function that maps 3D cells to a hash table
 ▪ Actual vertex-in-tetrahedron test
 • Using barycentric coordinates
 = Using this information
 : can be used for physically-based collision response
 ▪ optimized the parameters
 ▪ 20k tetrahedrons can be processed in real–time