
A Phase-Field Model for the Pinchoff of Liquid-Liquid Jets

Chang-Hun Kim∗ and Seung-Ho Shin†

Department of Computer Science, Korea University, Seoul 136-701, Republic of Korea

Hyun Geun Lee‡ and Junseok Kim§

Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea

(Received December 19 2008)

Abstract

Understanding pinchoff in a liquid-liquid jet is one of the fundamental problems in the physics

of fluid. Pinchoff has a wide variety of applications such as in ink-jet printers. We have numeri-

cally investigated the breakup of a forced liquid jet into drops in immiscible liquid-liquid systems

with a phase-field model. In the phase-field model, the classical sharp interface between the two

immiscible fluids is represented by a transition region of small but finite width. Across this width

the composition of one of the two fluids changes continuously. The phase-field method can deal

with topological transitions such as breakup and reconnection smoothly without ad hoc “cut and

connect” or smoothing procedures. We compared the numerical results on the pinchoff of liquid-

liquid jets with surface tension finding good agreement with experimental data. In particular, we

investigated axial velocity and vorticity structures around the jet neck before and after pinchoff.
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I. INTRODUCTION

Free boundary problems represent excellent approximations to a number of important

engineering, industrial, and biomedical problems such as breakup of a liquid column sur-

rounded by another fluid [1]. However, one of the great difficulties in the study of two

immiscible fluid flows is the presence of an interface. The interface changes and may un-

dergo severe topological deformations such as breakup and merging.

The phase-field model [2] provides a natural way of capturing the evolution of complex

interfaces and treating the topological changes of the interface. In this model, a mass con-

centration field c(x, t) is introduced to denote the mass fraction of one of the components

in a heterogeneous mixture of two fluids. The mass concentration is coupled to the fluid

motion through concentration dependent density, viscosity, and surface tension force. The

resulting system couples the Navier-Stokes equations to a fourth order, degenerate, non-

linear parabolic diffusion equation of the Cahn-Hilliard type for the concentration. The

advantages of this approach are: (1) Topological changes, such as the interface merging and

breakup, can be treated without difficulty. (2) The phase field has physical meanings not

only on the interface but also in the bulk phases. Therefore, this method can be applied to

many physical applications. (3) It can be straightforwardly extended to a three dimensional

multicomponent system. There are other approaches such as the lattice Boltzmann method

[3, 4] to study multiphase flow [5]. Anderson, McFadden and Wheeler have authored a

review paper of this phase-field model [6].

This paper is organized in the following manner. The definition and formulation of the

governing equation in cylindrical coordinates for the solution to the problem of a Newto-

nian liquid jet injected vertically into another Newtonian quiescent liquid are introduced

in Section II. We describe a numerical method in Section III. We compare the numerical

experiments with available experimental data from Milosevic and Longmire [1] in Section

IV. Finally, we present conclusions in Section V.

II. PROBLEM DEFINITION AND FORMULATION

In this paper, we consider a liquid-liquid jet that pinches off making droplets. The

experimental setup, consisting of a tank, a pump, a control valve, a rotameter, and a forcing
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FIG. 1: Recirculating jet facility.

apparatus, is illustrated in Fig. 1. The dimensions of the tank are 20.3 × 20.3 × 56 cm3.

A magnetic-driven pump generates a steady flow controlled by a needle valve. The flow (a

water/glycerin mixture) passes through a honeycomb straightener before exiting a nozzle

into an ambient layer of the Dow Corning fluid. More details about the experimental setup

are in [1]. The flow configuration, investigated numerically in our study, is shown in Fig.

2. The jet of a viscous fluid 1 is injected vertically from a circular nozzle downwards into a

tank of stationary mutually saturated immiscible fluid 2. The viscosity and density of the

inner jet fluid 1 are denoted by η1 and ρ1, respectively. Likewise, those of the outer ambient

fluid 2 are denoted by η2 and ρ2, respectively. The domain is axisymmetric with the center

line being the axis of symmetry.

A. The Governing Equations

We consider a situation of a binary fluid consisting of two components, fluid 1 and fluid 2.

We denote the composition of component 1, expressed as a mass fraction, by c(x, t), where

x is space position and t is time. In this setting the composition plays the role of an order

parameter that distinguishes the different phases of the fluid. Then, in dimensional form,
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FIG. 2: The liquid/liquid jet flow configuration.

the phase-field model [7] is

∇ · u = 0, (1)

ρu̇ = −∇p+ ∇ · [η(c)(∇u + ∇uT )] − 6
√

2ǫσ∇ ·
( ∇c
|∇c|

)

|∇c|∇c+ ρg, (2)

ċ = ∇ · (M(c)∇µ), (3)

µ = f(c) − ǫ2∆c, (4)

where · = ∂t + u · ∇ is the total derivative, u is the velocity, p is the pressure, ρ(c) = ρ1c+

ρ2(1− c) is the density, and η(c) = η1c+ η2(1− c) is the viscosity. −6
√

2ǫσ∇·
(

∇c
|∇c|

)

|∇c|∇c
is the interfacial tension body force concentrated on the interface, where σ is the interfacial

tension coefficient, and ǫ is the interface thickness parameter. M(c) = Mc(1 − c) is the

variable mobility, µ is the generalized chemical potential, and f(c) = F ′(c). F (c) is the

Helmholtz free energy where F (c) = 1
4
c2(1 − c)2 (see Fig. 3).

B. The Nondimensional Governing Equations

The next step is to restate the dimensional phase-field model in dimensionless form. For

this purpose, we define characteristic values such as length (L∗), velocity (V∗), viscosity

(η∗), density (ρ∗), chemical potential (µ∗), and mobility (M∗). We then introduce non-

dimensional variables for the space coordinates, time, the velocity components, viscosity,
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FIG. 3: A double well potential, F (c) = 0.25c2(c − 1)2.

the fluid pressure, interface thickness, chemical potential, and mobility:

x̄ =
x

L∗
, ū =

u

V∗
, η̄ =

η

η∗
, p̄ =

p

ρ∗V 2
∗

, ǭ =
ǫ

L∗
, µ̄ =

µ

µ∗
, M̄ =

M

M∗
,

where the bars denote dimensionless variables. Substituting these variables into the govern-

ing Eqs. (1)-(4), dropping the bar notations, and using the dimensionless numbers yield the

following nondimensional system:

∇ · u = 0, (5)

ut + u · ∇u = −∇p +
1

Re
∇ · [η(c)(∇u + ∇uT )] (6)

−6
√

2ǫ

We
∇ ·
( ∇c
|∇c|

)

|∇c|∇c+
ρ− 1

Fr2
G,

ct + u · ∇c =
1

Pe
∇ · (M(c)∇µ), (7)

µ = f(c) − ǫ2∆c. (8)

The dimensionless parameters are the Reynolds number, Re = ρ∗V∗L∗/η∗; the Weber num-

ber, We = ρ∗L∗V
2
∗ /σ; the Froude number, Fr = V∗/

√
L∗g; and the diffusional Peclet

number, Pe = L∗V∗/(M∗µ∗).

C. The Axisymmetric Navier-Stokes Cahn-Hilliard System

In this paper we consider only axisymmetric flows; therefore, there is no flow in the

θ (azimuthal) direction and all θ derivatives are identically zero. Therefore we consider

only two variables, r the radial direction and z the axial direction in the two-dimensional

axisymmetric domain Ω = {(r, z) : 0 < r < R, 0 < z < H}. We define the fluid velocity by
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the vector u = (u, w), where u = u(r, z) is the radial component of velocity and w = w(r, z)

is the component in the axial direction. We use the Boussinesq approximation to represent

the gravitational force due to a density difference between the jet and the ambient fluid.

The governing equations for axisymmetric flow are

1

r
(ru)r + wz = 0, (9)

ut + uur + wuz = −pr +
1

Re

[

1

r
(r(2ηur))r + (η(wr + uz))z −

2ηu

r2

]

+ F1, (10)

wt + uwr + wwz = −pz +
1

Re

[

1

r
(rη(wr + uz))r + (2ηwz)z

]

+ F2 −
ρ− 1

Fr2
, (11)

ct + ucr + wcz =
1

Pe

[

1

r
(rM(c)µr)r + (M(c)µz)z

]

, (12)

µ = f(c) − ǫ2
[

1

r
(rcr)r + czz

]

, (13)

where

F = (F1, F2) = −6
√

2ǫ

We
∇ ·
( ∇c
|∇c|

)

|∇c|∇c,

and

∇c = (cr, cz), ∇ · (φ, ψ) =
1

r
(rφ)r + ψz,

where the subscript indexes t, r, and z refer to differentiation with respect to the variable.

We, next, specify the boundary conditions. The amplitude of the velocity fluctuation

is adjusted such that a droplet is pinched off at the same downstream location as in the

experiments. For the inflow into the nozzle, we assume time dependent fully developed

Poissuille flow: u(r, 2π, t) = 0 and w(r, 2π, t) = V∗(1+α cos(2πft))(1−r2), where α and f are

the amplitude and frequency of the velocity fluctuation, respectively. We define the Strouhal

number, St = fL∗/V∗. Outside of the nozzle, no-slip conditions are used: u(r, 2π, t) =

w(r, 2π, t) = 0. For the axis of symmetry at r = 0, u(0, z, t) = ∂w(0,z,t)
∂r

= 0. For the outflow

boundary at the bottom of the mesh, z = 0. We assume no change in the axial direction:

∂u(r,0,t)
∂z

= ∂w(r,0,t)
∂z

= 0.

III. THE NUMERICAL METHOD

We employ a Chorin-type projection method for the decoupling of the momentum and

continuity equations. Our strategy for solving the system (9)-(13) is a fractional step scheme

having two parts. First, we solve the momentum and concentration equations (10)-(11)
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without strictly enforcing the incompressibility constraint (9); then, we project the resulting

velocity field onto the space of discretely divergence-free vector fields [8]. Then, we update

the phase field in Eqs. (12) and (13). We provide a detailed description is described in

Appendix A.

IV. NUMERICAL EXPERIMENTS

In our numerical simulations, we use the mean value for the flow rate at the nozzle.

Then, the simulation follows the time evolution of the flow until the jet length versus time

profile reaches a pseudo-steady behavior. The initial concentration field and velocity fields

are given by

c0(r, z) = 0.5

[

1 − tanh

(

r − 0.5 − 0.05 cos(z)

2
√

2ǫ

)]

,

u0(r, z) = w0(r, z) = 0

on a domain, Ω = {(r, z)|0 ≤ r ≤ 0.5π and 0 ≤ z ≤ 4π}. In this computation we use the

following parameters: ǫ = 0.02, Re = 58, We = 0.016, St = 3.5, and Pe = 100/ǫ.

Sequences of phase-locked images are shown in Fig. 4. We divide one cycle into 360◦

phases. As the liquid filament is stretched by gravity, a neck forms, elongates and becomes

thinner. In the meantime, the lower end of the filament turns into a round drop under

capillary forces. The falling drop continues to stretch the thread and eventually the Rayleigh

instability leads to a pinchoff of the main drop [9].

The normalized axial velocity (w) contours of the forced flow at St = 3.5 and Re = 58

are shown in Fig. 5. The highest contour level is 0 and succeeding levels are decreased by

1. We can see that, before pinchoff (Φ = 60◦ and Φ = 90◦), the maximum axial velocity

is located approximately at the jet neck. The fluid is thus accelerating into the neck and

acting to increase the volume of the drop. After the pinchoff, the maximum velocity still

resides inside of the drop (Φ = 120◦ and Φ = 150◦).

The normalized vorticity field (wr − uz) contours of the forced flow at St = 3.5 and

Re = 58 are shown in Fig. 6. Solid lines represent positive vorticity. The lowest contour

level is 0.05. Succeeding levels are incremented by 0.5. Dotted lines represent negative

vorticity. The highest contour level is −0.05. Succeeding levels are decreased by 0.5. At

the phase (Φ = 90◦), two opposite signed vorticities around the jet neck develop to act to
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FIG. 4: The time evolution leading to multiple pinchoffs. The phase-locked sequence of jet pinchoff

at Re = 58 and St = 3.5.

encourage pinchoff. The positive vorticity makes the fluid rotate clockwise, while negative

vorticity makes the fluid rotate counter-clockwise. After the drop pinches off, a small ring

of inverted vorticity develops at the jet tip due to the recoiling interface there.

In Fig. 7, we plot close-up shapes of drops at the phases, Φ = 120◦ and Φ = 240◦. At

Φ = 120◦, after pinchoff the upstream area of the drop has a large curvature. This curvature

and gravity accelerate the axial velocity making a maximum value at the upstream part of
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FIG. 5: Normalized axial velocity (w) contours of forced flow at St = 3.5 and Re = 58. The

highest contour level is 0. Succeeding levels are decreased by 1.
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FIG. 6: Normalized vorticity field (wr − uz) contours of forced flow at St = 3.5 and Re = 58.

The solid lines represent positive vorticity. The lowest contour level is 0.05. Succeeding levels are

incremented by 0.5. The dotted lines represent negative vorticity. The highest contour level is

−0.05. Succeeding levels are decreased by 0.5.

the drop. At Φ = 240◦, the upstream region of the drop has a large dimple. Interfacial

tension causes the upstream surface of the drop to recover to a convex shape as the drop

falls down. In Fig. 8, (a) and (b) are the normalized axial velocity (w) and (c) and (d)

are vorticity field (wr − uz) contours of forced flow. These results are qualitatively in good

agreement with the experimental data [1].
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FIG. 7: (a) Φ = 120◦ and (b) Φ = 240◦.
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(wr − uz) contours of forced flow.

V. CONCLUSIONS

In this paper, we described our numerical study of the physics of the pinchoff transition

in liquid-liquid jet systems. The numerical method we used is a phase-field model for solving

axisymmetric immiscible two-phase flow with variable density, viscosity, surface tension, and

gravity. The phase-field model is based on a physical background. It can deal with topolog-

ical transitions such as jet pinchoff. The axial velocity and vorticity structures around the

jet neck before and after pinchoff are qualitatively in good agreement with the experimental

results. In the future, we will include an electrostatic field in our governing equations to

simulate the electrostatic ejection of liquid droplets [15].
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APPENDIX A: THE NUMERICAL PROCEDURE

We use a projection method for solving the system (9)-(13) [8]. The computational grid

consists of square cells of size h; these cells Ωik are centered at (ri = (i − 0.5)h, zk =

(k − 0.5)h), where i = 1, · · · ,M and k = 1, · · · , N . The discrete velocity field un
ik and

the concentration field cnik are located at the cell centers. The pressure p
n− 1

2

i+ 1

2
,k+ 1

2

is located

at the cell corners. The notation un
ik is used to represent an approximation to u(ri, zk, t

n),

where tn = n∆t and ∆t is a time step. Given un−1,un, cn−1, cn, and pn− 1

2 , we want to find

un+1, cn+1, and pn+ 1

2 which solve the following equations of motion:

∇d · un+1 = 0,

un+1 − un

∆t
= −∇dp

n+ 1

2 +
1

2Re
∇d · η(cn+1)[∇du

n+1 + (∇du
n+1)T ]

+
1

2Re
∇d · η(cn)[∇du

n + (∇du
n)T ] + Fn+ 1

2 − (u · ∇du)n+ 1

2 ,

cn+1 − cn

∆t
=

1

Pe
∇d · (M(cn+ 1

2 )∇dµ
n+ 1

2 ) − (u · ∇dc)
n+ 1

2 , (A1)

µn+ 1

2 =
1

2
[f(cn) + f(cn+1)] − ǫ2

2
∆d(c

n + cn+1). (A2)

The outline of the main procedures in one time step follows:

Step 1. Initialize c0 to be the locally equilibrated concentration profile and u0 to be the

divergence-free velocity field.
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Step 2. Update the concentration field cn to cn+1. Details of this step are presented in

Section A1.

Step 3. Compute (u ·∇du)n+ 1

2 by using a second order ENO (essentially non-oscillatory)

scheme. The half time value u
n+ 1

2

ik is calculated using an extrapolation from previous values.

We obtain cell-edged values by u
n+ 1

2

i+ 1

2
,k

= (riu
n+ 1

2

ik + ri+1u
n+ 1

2

i+1,k)/(2ri+ 1

2

) and u
n+ 1

2

i,k+ 1

2

= (u
n+ 1

2

ik +

u
n+ 1

2

i,k+1)/2. In general, the normal velocities u
n+ 1

2

i+ 1

2
,k

and w
n+ 1

2

i,k+ 1

2

at the edges are not divergence-

free. We apply a MAC projection [10] before constructing the convective derivatives. The

equation

∆dφ = ∇MAC · un+ 1

2 (A3)

is solved for a cell centered φ. We solve the resulting linear system (A3) using a multigrid

method with Gauss-Seidel relaxation. Then the divergence-free normal velocities ũ and w̃

are defined by

ũ
n+ 1

2

i+ 1

2
,k

= u
n+ 1

2

i+ 1

2
,k
− φi+1,k − φik

h
, w̃

n+ 1

2

i,k+ 1

2

= w
n+ 1

2

i,k+ 1

2

− φi,k+1 − φik

h
.

The convective terms are discretized:

(u · ∇du)
n+ 1

2

ik =
ri+ 1

2

ũi+ 1

2
,k + ri− 1

2

ũi− 1

2
,k

2rih
(ūi+ 1

2
,k − ūi− 1

2
,k)

+
w̃i,k+ 1

2

+ w̃i,k− 1

2

2h
(ūi,k+ 1

2

− ūi,k− 1

2

),

where we suppress the n+ 1
2

temporal index. The edge values ū
n+ 1

2

i± 1

2
,k

and ū
n+ 1

2

i,k± 1

2

are computed

using a higher order ENO procedure derived in Ref. [11]. The procedure for computing the

quantity fi+ 1

2
,k is:

j =







i ũi+ 1

2
,k ≥ 0

i+ 1 otherwise

a =
fjk − fj−1,k

h
, b =

fj+1,k − fjk

h
, d =







a if |a| ≤ |b|
b otherwise

fi+ 1

2
,k = fjk +

h

2
d(1 − 2(j − i)).

Step 4. We solve

u∗ − un

∆t
= −∇dp

n− 1

2 +
1

2Re
∇d · η(cn+1)[∇du

∗ + (∇du
∗)T ] (A4)

+
1

2Re
∇d · η(cn)[∇du

n + (∇du
n)T ] + Fn+ 1

2 − (u · ∇du)n+ 1

2
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using a multigrid method for the intermediate velocity u∗. Here we use the following dis-

cretizations for the derivatives.

(∇dp)ik =





p
i+ 1

2
,k+1

2

+p
i+1

2
,k−1

2

−p
i−1

2
,k+1

2

−p
i−1

2
,k− 1

2

2h
p

i+ 1
2

,k+1
2

+p
i− 1

2
,k+1

2

−p
i+1

2
,k− 1

2

−p
i−1

2
,k− 1

2

2h



 .

Let (L1,L2) = ∇ · [η(∇u + ∇uT )] =





2
r
(rηur)r − 2η

r2u+ (ηuz)z + (ηwr)z

1
r
(rηuz)r + 1

r
(rηwr)r + 2(ηwz)z



 .

Then the first component of the viscous terms is discretized as follows:

L1
ik =

2ri+ 1

2

ηi+ 1

2
,k(ui+1,k − uik) − 2ri− 1

2

ηi− 1

2
,k(uik − ui−1,k)

rih2

−2ηik

r2
i

uik +
ηi,k+ 1

2

(ui,k+1 − uik) − ηi,k− 1

2

(uik − ui,k−1)

h2

+
ηi,k+ 1

2

(wi+1,k+1 − wi−1,k+1 + wi+1,k − wi−1,k)

4h2

−
ηi,k− 1

2

(wi+1,k − wi−1,k + wi+1,k−1 − wi−1,k−1)

4h2
,

where ri+ 1

2

= (ri+1 + ri)/2, ηi+ 1

2
,k = [η(cik) + η(ci+1,k)]/2. Next, we derive a discretization

for the surface force term. The vertex-centered normal vector at the top right vertex of cell

Ωik is given by

mi+ 1

2
,k+ 1

2

= (mr
i+ 1

2
,k+ 1

2

, mz
i+ 1

2
,k+ 1

2

)

=

(

ci+1,k + ci+1,k+1 − cik − ci,k+1

2h
,
ci,k+1 + ci+1,k+1 − cik − ci+1,k

2h

)

.

The curvature is calculated at the cell centers from the vertex-centered normals and is given

by

κ(cik) = ∇d ·
(

m

|m|

)

ik

=
1

2h





r
i+1

2

ri
mr

i+ 1

2
,k+ 1

2

+mz
i+ 1

2
,k+ 1

2

|mi+ 1

2
,k+ 1

2

| +

r
i+ 1

2

ri
mr

i+ 1

2
,k− 1

2

−mz
i+ 1

2
,k− 1

2

|mi+ 1

2
,k− 1

2

|

−

r
i− 1

2

ri
mr

i− 1

2
,k+ 1

2

−mz
i− 1

2
,k+ 1

2

|mi− 1

2
,k+ 1

2

| −

r
i− 1

2

ri
mr

i− 1

2
,k− 1

2

+mz
i− 1

2
,k− 1

2

|mi− 1

2
,k− 1

2

|



 .

The cell-centered normal is the average of the vertex normals,

∇dcik =
(

mi+ 1

2
,k+ 1

2

+ mi+ 1

2
,k− 1

2

+ mi− 1

2
,k+ 1

2

+ mi− 1

2
,k− 1

2

)

/4.
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Therefore, the discretization of the surface tension force formulation F is

F(cik) = −6
√

2σǫ∇d ·
(

m

|m|

)

ik

|∇dcik|∇dcik.

Step 5. Project u∗ onto the space of discretely divergence-free vector fields and get the

velocity un+1, i.e., u∗ = un+1 + ∆t∇dφ, where φ satisfies ∆dφ = ∇d · u
∗−u

n

∆t
.

Step 6. Update pressure field, pn+ 1

2 = pn− 1

2 + φ. These steps complete one time step.

1. The Numerical Solution of the Axisymmetric Cahn-Hilliard Equation

We use a nonlinear Full Approximation Storage (FAS) multigrid method [12–14] to solve

the nonlinear discrete system at the implicit time level. Let us rewrite equations (A1) and

(A2) as follows.

NSO(cn+1, µn+ 1

2 ) = (φn, ψn),

where

NSO(cn+1, µn+ 1

2 ) =

(

cn+1

∆t
− 1

Pe
∇d · (M(c)n+ 1

2∇dµ
n+ 1

2 ),

µn+ 1

2 − 1

2
f(cn+1) +

ǫ2

2
∆dc

n+1

)

.

The source term is (φn, ψn) = ( cn

∆t
+ sn+ 1

2 , 1
2
f(cn) − ǫ2

2
∆dc

n) where sn+ 1

2 = −(u · ∇dc)
n+ 1

2 .

We assume a sequence of grids Ωl (Ωl−1 is coarser than Ωl by a factor of 2).

The FAS multigrid cycle

{cm+1
l , µ

m+ 1

2

l } = FAScycle(l, cnl , c
m
l , µ

m− 1

2

l , NSOl, φ
n
l , ψ

n
l , ν).

Step I) Presmoothing

Compute {c̄ml , µ̄
m− 1

2

l } by applying ν smoothing steps to {cml , µ
m− 1

2

l }

{c̄ml , µ̄
m− 1

2

l } = SMOOTHν(cnl , c
m
l , µ

m− 1

2

l , NSOl, φ
n
l , ψ

n
l ).

One SMOOTH relaxation operator step consists of solving the system (A7) and (A8) given

13



below by a 2 × 2 matrix inversion for each i and k. Let us discretize Eq. (A1) to get a

smooth operator.

cn+1
ik

∆t
+







ri+ 1

2

M
n+ 1

2

i+ 1

2
,k

+ ri− 1

2

M
n+ 1

2

i− 1

2
,k

rih2Pe
+
M

n+ 1

2

i,k+ 1

2

+M
n+ 1

2

i,k− 1

2

h2Pe






µ

n+ 1

2

ik

=
cnik
∆t

+ s
n+ 1

2

ik +
ri+ 1

2

M
n+ 1

2

i+ 1

2
,k
µ

n+ 1

2

i+1,k + ri− 1

2

M
n+ 1

2

i− 1

2
,k
µ

n+ 1

2

i−1,k

rih2Pe

+
M

n+ 1

2

i,k+ 1

2

µ
n+ 1

2

i,k+1 +M
n+ 1

2

i,k− 1

2

µ
n+ 1

2

i,k−1

h2Pe
, (A5)

where M
n+ 1

2

i+ 1

2
,k

= M((cn+1
ik + cn+1

i+1,k + cnik + cni+1,k)/4). Next, let us discretize Eq. (A2).

Since f(cn+1
ik ) is nonlinear with respect to cn+1

ik , we linearize f(cn+1
ik ) at cmik, i.e., f(cn+1

ik ) ≈
f(cmik)+

df(cm
ik

)

dc
(cn+1

ik − cmik). After substitution of this into (A2) and rearranging the terms, we

get

−
(

df(cmik)

2dc
+

2ǫ2

h2

)

cn+1
ik + µ

n+ 1

2

ik =
1

2
f(cnik) −

ǫ2

2
∆dc

n
ik +

1

2
f(cmik) (A6)

−df(cmik)

2dc
cmik −

ǫ2

2

(

ri+ 1

2

cmi+1,k + ri− 1

2

cn+1
i−1,k

rih2
+
cmi,k+1 + cn+1

i,k−1

h2

)

.

Next, we replace cn+1
jl and µ

n+ 1

2

jl in Eqs. (A5) and (A6) with c̄mjl and µ̄
m− 1

2

jl if (j < i) or

(j = i and l ≤ k), otherwise with cmjl and µ
m− 1

2

jl , i.e.,

c̄mik
∆t

+







ri+ 1

2

M
n+ 1

2

i+ 1

2
,k

+ ri− 1

2

M
n+ 1

2

i− 1

2
,k

rih2Pe
+
M

n+ 1

2

i,k+ 1

2

+M
n+ 1

2

i,k− 1

2

h2Pe






µ̄

m− 1

2

ik

=
cnik
∆t

+ s
n+ 1

2

ik +
ri+ 1

2

M
n+ 1

2

i+ 1

2
,k
µ

m− 1

2

i+1,k + ri− 1

2

M
n+ 1

2

i− 1

2
,k
µ̄

m− 1

2

i−1,k

rih2Pe

+
M

n+ 1

2

i,k+ 1

2

µ
m− 1

2

i,k+1 +M
n+ 1

2

i,k− 1

2

µ̄
m− 1

2

i,k−1

h2Pe
, (A7)

−
(

df(cmik)

2dc
+

2ǫ2

h2

)

c̄mik + µ̄
m− 1

2

ik =
1

2
f(cnik) −

ǫ2

2
∆dc

n
ik +

1

2
f(cmik) (A8)

−df(cmik)

2dc
cmik −

ǫ2

2

(

ri+ 1

2

cmi+1,k + ri− 1

2

c̄mi−1,k

rih2
+
cmi,k+1 + c̄mi,k−1

h2

)

.
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Step II) Compute the defect: (d̄1
m

l , d̄2
m

l ) = (φn
l , ψ

n
l ) −NSOl(c̄

n
l , c̄

m
l , µ̄

m− 1

2

l ).

• Restrict the defect and {c̄ml , µ̄
m− 1

2

l }:

(d̄1
m

l−1, d̄2
m

l−1) = I l−1
l (d̄1

m

l , d̄2
m

l ), (c̄ml−1, µ̄
m− 1

2

l−1 ) = I l−1
l (c̄ml , µ̄

m− 1

2

l ).

The restriction operator I l−1
l maps l-level functions to (l − 1)-level functions.

cl−1(ri, zk) = I l−1
l cl(ri, zk) =

1

4h2ri

∫ zk+1

zk−1

∫ ri+1

ri−1

c(r, z)rdrdz

= [ri− 1

2

(ci− 1

2
,k− 1

2

+ ci− 1

2
,k+ 1

2

) + ri+ 1

2

(ci+ 1

2
,k− 1

2

+ ci+ 1

2
,k+ 1

2

)]/(4ri)

• Compute the right-hand side:

(φn
l−1, ψ

n
l−1) = (d̄1

m

l−1, d̄2
m

l−1) +NSOl−1(c̄
n
l−1, c̄

m
l−1, µ̄

m− 1

2

l−1 ).

• Compute an approximate solution {ĉml−1, µ̂
m− 1

2

l−1 } of the coarse grid equation on Ωl−1, i.e.

NSOl−1(c
n
l−1, c

m
l−1, µ

m− 1

2

l−1 ) = (φn
l−1, ψ

n
l−1). (A9)

If l = 1, we employ smoothing steps. If l > 1, we solve (A9) by performing a FAS l-grid

cycle using {c̄ml−1, µ̄
m− 1

2

l−1 } as an initial approximation:

{ĉml−1, µ̂
m− 1

2

l−1 } = FAScycle(l − 1, cnl−1, c̄
m
l−1, µ̄

m− 1

2

l−1 , NSOl−1, φ
n
l−1, ψ

n
l−1, ν).

• Compute the coarse grid correction (CGC):

v̂m
1l−1 = ĉml−1 − c̄ml−1, v̂

m− 1

2

2l−1 = µ̂
m− 1

2

l−1 − µ̄
m− 1

2

l−1 .

• Interpolate the correction: v̂m
1l = I l

l−1v̂
m
1l−1, v̂

m− 1

2

2l = I l
l−1v̂

m− 1

2

2l−1 . The interpolation operator

I l
l−1 maps (l − 1)-level functions to l-level functions. Then the prolongation operator I l

l−1

from Ωl−1 to Ωl is defined by















vl(ri− 1

2

, zk− 1

2

)

vl(ri− 1

2

, zk+ 1

2

)

vl(ri+ 1

2

, zk− 1

2

)

vl(ri+ 1

2

, zk+ 1

2

)















= vl−1(ri, zk)





















ri

r
i− 1

2

ri

r
i− 1

2

ri

r
i+ 1

2

ri

r
i+ 1

2





















.
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• Compute the corrected approximation on Ωl

cm, after CGC
l = c̄ml + v̂1

m
l , µ

m− 1

2
, after CGC

l = µ̄
m− 1

2

l + v̂2
m− 1

2

l .

Step III) Postsmoothing: Compute {cm+1
l , µ

m+ 1

2

l } by applying ν smoothing steps to

cm, after CGC
l , µ

m− 1

2
, after CGC

l .

{cm+1
l , µ

m+ 1

2

l } = SMOOTHν(cnl , c
m, after CGC
l , µ

m− 1

2
, after CGC

l , NSOl, φ
n
l , ψ

n
l ).

This completes the description of a nonlinear FAScycle for the axisymmetric Cahn-

Hilliard equation.
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